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ABSTRACT

This report reviews and summarizes the analytic and numeric
methods available for the study of saltwater intrusion into
freshwater aquifers in coastal and island situations. The
methods are divided Into three categories. The first deals
with closed-form analytic solutions of steady interface problems
using the hodograph method. In these problems, the saltwater
and freshwater are separated by an abrupt interface and the
location of this interface is determined for simple aguifer
geometries and boundary conditions, These solutions can also
be used to test the accuracy of numerical techniques, The
second category of methods deals with solutions utilizing the
Dupuit and Ghyben-Herzberg approximations., The unsteady
equations in one and two dimensions that nced to be solved are
presented. Numerical approximations of these differential
equations are suggested and results reported in the literature.
The last category of methods deals with numerical solutions of
the convection-dispersion equation. A finite element solution
of the cquations applied to a vertical two-dimensional plane
is presented. This method results in the concentraticn of
salt as a function of space and time. The advantages and
limitations of all the methods are discussed.
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INTRODUCTION

Of primary interest to communities of oceanic islands is the
acquisition of freshwater for domestic and municipal purposes.
Because an island is a closed physical system, there is a limited
number of methods by which freshwater can be obtained. Such methods
include desalinization of seawater, surface catchment of precipita-~
tion, and extraction of fresh groundwater. Of the three methods,
the extraction of fresh groundwater is generally the most desirable
in terms of cost and reliability.

Fresh groundwater beneath a coastal area or oceanic island often
occurs as a lens-shaped body bounded by a phreatic surface above and
a transition zone bhelow. The overall configuration of the lens is
determined by the size, geometry, and permeability of the island: by
the extent of urban development, including groundwater extraction;
and by the rate of groundwater recharge. Time-related changes in
the lens configuration are related to seasonal variations in recharge
and variable pumping rates.

The development and management of a freshwater lens is dependent
on a firm understanding of the characteristics of lens behavior under
a set of current, expected, or proposed conditions. Often physical or
mathematical models are employed to predict the response of the ground-
water-I'low system toc various known stresses. From such predictions,
present development schemes can be tested; relative merits of various
alternatives can be appraised; and long-term groundwater management

policies can be formulated. Thus, the model, if properly posed and



thoroughly tested, provides valuable insight to the behavior of
a groundwater-flow system that otherwise may not be acquired by
observations alone and a tool for further development and
management of the freshwater resource.

The purpose of this report is to provide a review of various
mathematical modeling techniques that apply to the Guam case.
Three methods are presented: hodograph analysis, Dupuit and
Ghyben-Herzberg approximations, and solution of the convection-
dispersion equation in conjunction with the groundwater-flow
equations. Each of the three methods can be applied, at least in
part, to the groundwater-flow system of northern Guam as well as
to other areas of the island underlain by fresh or brackish ground-

water.

LITERATURE REVIEW

The most relevant current literature dealing with seawater
intrusion and island groundwater-flow systems will be reviewed in
the same order as the content of the next three chapters. First,
the literature dealing with the exact solution of the steady-state
interface using the hodograph plane will be reviewed. Next, the
approximate solutions utilizing the Dupuit and Ghyben-Herzberg
approximations will be dealt with. Finally, the literature
concerning the convection-dispersion equation will be reviewed.

The hodograph method is a technique that was introduced by
Hemholtz and Kirchhoff to study discontinuous motion of liquids.

The first applications of this method were to free streamline flow



and te the calculation of the coefficients of contraction of
nozzles and orifices. The method was applied to groundwater flow

to determine the location and shape of the phreatic surface as
water seeps through an earth dam. Numerous applications to ground-
water problems have been illustrated by Peolubarinova-Kochina (1962),
Aravin (1965), and Harr (1962). Applications to seawater intrusion
problems have been described by Henry (1959), Bear (1972), Bear

and Dagan (1964), and De Josselin de Jong (1965). This method has
provided exact solutions to some problems with simple boundary
conditions. As the boundary conditions get to be more complex,

the hodograph method may not be able to provide exact solutions,
even though numerical and analog techniques may be used to obtain
solutions to practical field problems. The exact solutions obtained
by the hodograph method may be used to check the accuracy of other
numerical methods, for example finite difference and finite element
techniques.

Approximate techniques have been developed which make use of
the Dupuit and Chyben-Herzberg approximations. Glover (1958) used
the method of complex variables to determine the shape of the steady
interface in a confined aquifer. Van der Veer (1977) obtained a
non-linear algebraic equation using complex potentials by which he
solved for the shape and the location of both the phreatic surface
and the interface in an unconfined coastal aquifer with uniform
vertical recharge, Numerical sclutions of one-dimensional, time-
varying flow have been obtained by Anderson (1976) as applied to

strip oceanic islands. Fetter (1971) presented a two-dimensional,



steady-state model to study water—-table elevations for an cceanic
igland of any shape. An unsteady model in two-dimensions has been
developed by Avers (1979) and applied to the aquifers in Bermuda.
All the models referred to previocusly have made the assumption
that a sharp interface exists between the fresh and seawater. In
many cases this is a reasonable assumption and, when this can be
confirmed by field data, models similar to those described above
can be used confidently fer aquifer management and future planning.
If, however, field data indicate that the transition zone is
extensive, then the convection-dispersion equation for salt
transport has to be solved in addition to the groundwater flow
equations. The first attempt at solving these equations was
reported by Pinder and Cooper (1970). They solved the flow
equations by the alternate-direction~implicit (ADI) finite
difference procedure and solved the salt transport equation using
the method of characteristics., A similar problem was treated by
Segol, Pinder and Gray (1975) using the finite element technique,
including the pogsibility e¢f a layered or otherwise non-homecgenecus
porous medium. A similar finite element program was developed for
application to the aquifers of eastern Virginia by Desai and

Contracteor (1976} and Wu, Desai and Contractor (1976).



SOLUTIONS OF THE STEADY-STATE INTERFACE
USING THE HODOGRAPH METHOD

The hodograph plane is a two-dimensional plot of the
horizontal and vertical velocities in & groundwater flow domain.
The flow domain can be drawn in the (x,y) plane and at every point
in the flow domain the horizontal and vertical velocities {(u,v) can
be determined and a point plotted in the (u,v) plane. Every peint
in the flow demain (x%,y) can thus be mapped inte the hodograph
(u,v) plane. If the boundaries in the flow domain are transformed
into corresponding boundaries in the hodograph plane, then the
interior of the flow domain will map intec corresponding points
within the boundaries in the hodograph plane.

Let z=x+iy and W=utiv, where i = y-1. Also, let w= f(z) =
¢(x,y) + ip(x,y). When w is an analytic (regular or holemorphic)
function of z, then ¢(x,y) can be shown to be the velocity
potential and §(x,y) can be shown to be the stream function.

Every analytic function of z thus forms a possible fluid flow
pattern that can be described by equipotential lines and streamlines.
The derivative of w with respect to z can be shown to have a real
part equal to the horizontal velocity u and an imaginary part that

is equal to the negative of the vertical velocity v; i.e.,

dw

a W' = u - iv. The hodograph plane is the reflection of the

W' plane about its horizontal (u} axis.
The transforms of the more commonly-encountered boundaries in

the z plane into the hodograph (W) plane follow:



1) Impervious Boundary.

In the z plane, an impervious boundary is specified by
g%—= 0 or ¢ = constant, since the flow is tangent to it. If the
impervious boundary in the z plane is a straight line, then the
equation of the corresponding line in the hodograph plane is
v = u tan a, where o is the angle the imprevious boundary makes

with the +x axis. Thus, the transform is a straight line through

the origin and parallel to the impervious boundary.

2) Reservoir Boundary

This boundary would be specified in the z plane by ¢ = constant

iy

i
T_

ds

ox = 0. If the reservoir boundary is a straight line, then
the transform becomes v= u cot o, where o is the inclination of
the reservoir boundary with the +x axis. This transform is a

line going through the origin perpendicular to the reservoir

boundary.

3) Phreatic Surface.
a) With Accretion.
The shape of the phreatic surface is unknown 'a priori’
and is, in general, curvilinear. Since the pressure along
this boundary is atmospheric {p = 0), the boundary condition
is 4= Ky. The corresponding boundary condition in the hodograph
plane is given by u? + (v + K/2)2 = (X/2)2. This is the
equation of a circle with center (0, -K/2) and radius of K/2.

K is the permeability of the porous medium.



b) With Acecretion
1f infiltration occurs at a flow rate per unit area of

N, then the phreatic surface is no longer a streamline and

y= Nx + constant. The corresponding equation in the hodograph

plane becomes u? + [v + (K - N)/2]2 = [(K + N)Y/2]2. fThis is
the equation of a circle with center at [0, -(K - N)/2] and

radius (K + N)/2.

4} Surface of Seepage.

The surface of seepage is not a streamline and, since it is
at atmospheric pressure (p = 0), the boundary condition ¢ = Ky
applies. Let the surface of seepage be a straight line inclined
at an angle with the +x axis. The transform of this boundary in
the hodograph plane is given by v = u cot a - K; i.e., by a
straight line through (0, -K) and perpendicular te the surface of

seapage.

5) Interface Between Two Immiscible Fluids of Different Densities.
The assumption is made that the heavier liquid is stationary.
¥s denotes its specific weight and Yf denotes the specific weight

of the lighter fluid. The boundary condition that the pressure

is centinuous across the interface gives rise to the equation

6 = (_Y_S_‘lf_

YE J Ky, where Ys>Yf. This boundary condition is very
J

similar to the boundary condition for a phreatiec surface without
accretion. The interface is also a streamline. The transform of
the interface in the hodograph plane is u? + (v- K'/2)2= (K'/2)2,
where K' = K (Ys-Yf}/Yf. This is the equation of a circle with

center at (0,K'/2) and radius K'/2,



6) Surface of Seepage of Lighter Liquid (Yf) into a Reservoir of
Stationary Heavier Liquid (vg).
To maintain continuity of pressure across the surface of
_|¥s=vf£ . . .
seepage, ¢= Ky. However, in this case, the boundary is
Yf
not a streamline. The transform of the boundary in the hedograph

plane is v = u tan (¢ -90) + K'., Thus, the transform is a straight

line going through K' and perpendicular to the surface of seepage.

Application of the Hodograph to the Interface
in a Confined Coastal Aquifer

Figure 1(a) shows a diagram of a confined coastal aquifer in
which there is a flow (Q) of freshwater in an aquifer with
permeability K. The boundaries of the flow domain can be trans-
formed into the hodograph (W) plane as shown in Figure 1(b).

The complex potential {(w) plane is shown in Figure 1(c). The
hodograph (W) plane is reflected about the u axis, resulting
in the W' plane. Since the hodograph plane has a semi-circle
as one of its boundaries, the boundaries are plotted in a new
plane {W*) that is the reciprocal of W'; i.e., Wk= K'/W'.
Figure 1(d) shows that all the boundaries in this (W*) plane are
straight lines. The figures in 1l{(c) and 1(d) are transformed into
the upper half of the 't' plane by means of the Schwarz-Christoifel
transformation. These transformations are given below:

t = cosh (aW%),

v +“3 cosh “'[(at-1)/(a=t)]



where:
a = cosh (mK'D/Q) = cosh (ﬂK'KqO).
Since:
‘:ﬁ\F-:-' *
W =Kk,
W W dw
dz = K dw = ST dt

Q vaZ = 1 cosh T ac.
12 K' (a-t) V&2 - 1

To derive the parametric equatiens for the interface, the differen-
tial equation shown above needs to be intergrated from t = -= to
£ = -1.

1

Let n = cosh  (-t). Therefore:

dz = Q VaZ-1 {(n + im) dn.

72K" {(a + cosh 1)

Separating the real and imaginary part of the equation, one

obtains:

dx = Q v a? -1 wdy

7m2K* (a + cosh v)

dv = Q@ Val-1 dv.

7K' (a + cosh v)

Integrating the latter equation, one ohtains:

y =49 Fi(»)
mK'
where:
a+ 1+ YaZ -1 tanh (v/2).
a+ 1 - Va2 -1 tanh {(v/2)

Fl(\)) = In
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For large values of a, y may be approximated by:

y =9 [v-Fa(v}]
mK!

where:

F3(v) = 1n e
1 + 2a

Integrating the equation for dx, one obtains:

X = QTET % (V)

m

where:

Fo(v) = vF (V) - JVFl(v)dv.
Q

The values of the functions can be obtained by numerical
integration. A graphical sclution for the interface shape and
location is presented in Bear (1972) and Bear and Dagan (1964).
This solution can be used to check the accuracy of new numerical
methods. Other solutions for this problem have been compared
with this solution, Glover (1958), and found to be accurate enough
for engineering purposes. It can alsoc be shown that the Dupuit
and Ghyben-Herzberg approximations can be used to simplify the

solutien technique without much loss of acecuracy,.

SOLUTIONS UTILIZING THE DUPUIT AND GHYBEN - HERZBERG APPROXIMATIONS
Glover (1958) determined the shape of the seawater interface

in an infinite aquifer. He utilized Kozeny's analysis of free

surface flow towards a horizontal drain. Glover showed that the

interface has a parabolic shape given by the equation:

2 _ gg. X - 2 =0
y YK %YEf
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Van der Veer (1977) analyzed the pesition of the seawater
interface in an ipfinite medium with a phreatic surface and with
infiltration from precipitatioen. For the one-dimensional case,

he showed that:

#
Co 2C) N 2 e
- X~ = X~ . A
2 K he K A » S
H = - ?‘._... 4 '_..'u :k}:
vy (y'+ 1) T
., AT
. e e, ‘.4‘-'.\)
where v' = (yq = Yf) fo and C; and Cy are integration . ’{

constants. H is the Jdepth of interface below sea level. h =
Y'H=height of phreatic surface above sea level and q = Nx + Cy.

For the two-dimensicnal case, he presented the following equations:

_fM_Z + 2.9 x

w2 - LK K
N
(v + 1 G+
N
N [1 -y 4 —Jj{
h2 = (Nu? ZQ*X) S i) - (ﬂf)z K
K 7K G + 1) K (v + 1) -1
— 1
. (- v )
g = 4° 1- 1- (E)
e N K- (l_ H' ( . E)j
K Y K-~
Re = distance of shoreline to intersection of interface

with sea level.

where g* = q + Nig.
Anderson (1976) reported on a numerical a model for unsteady,
one-dimensional flow beneath strip oceanic islands. The delayed

interface response (DIR) model that she worked with solved the
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following partial differential equation:

g l = ah ah
[ —_— - —_—— -
™ K(h+H ™ 5 3t N (x,t)
where H = y'h and S = the storage coeficient,

Anderson solved this equation using the predictor-corrector
technique described by Douglas and Jones (1963) and the Thomas
algorithm for solving tri-diagenal matrices [Remson et al
{(1971)]. She applied his model to the groundwater situation on
the South Fork of Long Island, N. Y, The water level in one of
the wells was simulated satisfactorily for a year by varying the
recharge rates.

Fecter (1971, 1972) presented a steady-state, two-dimen-
sional model that he applied to the South Fork of Long Island,
N. Y. Recharge to the aquifer was determined from the precipi-
tation, evapotranspiration, gaged streamflow and consumptive use
of water. He compared the computed elevation of the interface
with the measured elevation of the top of the zone of diffusion
in a nuwber of wells, Except for one well, the computed
elevations were within 6% of the measured elevations.

A time-dependent, two-dimensional model was developed
for two aquifers in Bermuda by Ayers (1979). This study seems
to be the most comprehensive work involving a sharp interface to date

He usced the two-dimensional extension of Andersovn's delayed interface

response (DIR) model:

32(h*) |, 3Z(h?) _ 2 Sy 3h 2 W(x,y,t)
%2 ay? K (1++y") 3t~ X (1+¥"
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1 2
By substituting %% = Eg- %%— and h* = h2, the equation becomes:

22h%  + 32h* Sy sh* _ 2 N (x,y.t)
Dx2 ay? Kh (1 +v 'y ot K (1 +y.D

The time-derivative term is non-linear because of the presence
of h in the dencominator. It can be linearized by using an average

value h for h. Thus, the linearized equation becomes:

2%h% | 3%h* _ Sy sh* 2 N(x,y,t) .
dxZ 3y 2 K (1+v" h Bt K (1L+v"

The finite - difference equivalent of the above equation is
next written using:

i as a spatial index in the x direction

j as a spatial index in the y direction

n as an index of time and

m as a counter of the iteration number,
Avers used the iterative alternate direction implicit (IADT)
method proposed by Peaceman and Rachford (1955}, The iterative
method was preferred over the non~iterativemethod because
the convergence error can be specified and because larger time
steps can be used [Trescott et al (1976}, Each of the two
finite difference equations was solved iteratively using the

tri-diagonal Thomas algorithm [Remson et al (1971)k
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SOLUTIONS OF THE CONVECTION-DISPERSION EQUATION

The important details of the finite element approach to the

gsolution of the convection-dispersion equation are described

below., For a vertical (x,y) section, the equations that need
to be solved are:
. ¥
o2 (pud 3 (pv) _ o'W _ 0
9x 3y
u o, Knodp _
£y 8x
v Ezz(ﬁp_+g] -0
E M “9X
3 CD11 3‘33+ [D2LC)_ aluc) _3lve) _ c'Mg _ 3c
3x 9y £ ot
I < + Ec.
where:
¢ = Porosity
p = Mass density of [luid
p' = Mass Density of recharge liquid
Ki1= Intrinsic permeability in the X direction
Ko5= Intrinsic permeability in the y direction
u = Coeficient of viscosity
ws = Well recharge in volume flow rate/unit area
(dx+dy)
D;y= Dispersion coeficient (L2/T) in the x direction
2
D,»,= Disperison coeficient (L /T) in the y direction
c¢' = Concentration of techarge liguid,
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¢ = Concentration of aquifer liquid

Py = Mass density of fresh water

F = A constant = 0,7 for salt concentration
u = Seepage velocity in the x direction

v = Seepage velocity in the y direction

The first equation is related to the conservation of total
Fiuid mass, including fluid mass due to agquifer recharge and
pumping. The second equation is Darcy's law applied in the
horizontal direction. The third equation is Darcy's law applied
in the vertical direction, If Dupuit's assumption was going to
be used, then this equation would not be necessary. The fourth
equation is the convection - dispersion equation which has to
be used if the Ghyben - Herzberg assumption is not held valid.
The fifth equation relates the concentration of the salt water
to the density of the fluid,

Even though all the dependent variables p,u,v,c, and p are
assumed to be time dependent, only the fourth equation has a
time dependent term in it. This is because it has been assumed
that pressure propagates more rapidly in the system than salt
transport, It should also be noted that the velocities u and v
are calculated simultaneously with p, so as tc ensure that the
velocities will be continuous between elements, Countinuity of
velocities between elements is one of the reasons why numerical

stability is maintained at high Peclet (VL/D) numbers. In the
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fourth equation, if the first two diffusion terms deminate over
the next twe counvective terms, then the numerical scheme provides
satisfactory results, If, on the other hand, the couovective
terms are dominant, then in the region of high pressure gradients,
numerical difficulties have been known to lead to negative values
of concentration. Thus, the formulaticen wmust be such that the
velocity field is properly represented,

The procedure for solving the five eguations is as follows:
The first three equations are solved for a first estimate of the
pressure and velocities. The velocities are then used in the
fourth equation to solve for the concentrations. The concentra-
tions are used to update the density distribution using the
fifth equation. The first three equationsg are then solved again
using the new density distribution and the cycle repeated till
convergence is reached.

The Galerkin weighted residual method is used te obtain
The

numerical solutions of the partial differential equations,

principal steps in this method will be outlined. First, the

variation of the dependent variables is expressed in terms of

T ¥

the values of the variables at the 'n' nodes of an element as

follows:

i
[T
—

p(x,y,t)

U(X}Ya t)

1
1] g'en]

v(x,y,t) = B

clx,y,t)

Nj(x,y) pj(t)

Nj(x,y) uj(t)
Nj(x,y) vj(t)

N . .
j(x V) cJ(t)
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where Nj(x,y) are the basis of interpolating functions and
pj’uj’v4’ and Ci are the time dependent values at the nodes of
the element.

If approximate values of the variables at the nodes are
assumed and these approximations substituted intc the differential
equations, the right hand side of the equations will not be equal
to zerc but will be equal to some residue R, More accurate
values of the variables can be found if the welighted residues are
reduced to zero. Let the residues of the four differentcial
equations be RP,RU,RV, and Rc' In the Galerkin method, rthesc

residues are weighted by the basis functions, integrated over

the element area and set equal to zero:

IARP(U,V) Nj(x,y) dA = 0
IARu(u,p) Nj(x,y) dA = 0
= 0

[ R, (v,p) N, Gr,y) dA

ARc(u,v,c) Nj(x,y) dA = 0

Substituting the differential equations and the variable

approximations into the equations above, one obtains:

a n d I :

- N +e—lp.L, Nyv,} - o'W ] N, dA =20
“g e Cgfy v d e G0 Ny e Ny

A
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K P b1
N.v. + 22 ([ — [.5, N.p.]1+ N. dA = 0
v ( y LyE1 Mgy e)| N

[l
o

-

3 3, 3 5 .0
NG Ou ik N ¢ gy Duzgy G Nyl

3 n n 3 n n

- T 5. N,u, .. N,e, - . Now. v N.c.
ox ([J=l st Lk Ny J]) 3y ([Jél V50 Ly B J])
c'W n

- B - ] .o N.,c,1] N, dA =0
- Y i=l 3] i

The first three equations can be expanded and put in the following

matrix form:

L
where:
B 0 D oe e onoN, | e X mN,
| IX 7 1 € By & j° 1
Kip 9Ns N I N, N ! 0 da
H, = Rk ;
i3 EM 0% . | 34 |
Al—. — — — — — — — - — — — — — — —— — —
K N, N 1 i
22 i i 0 N, N,
cn 3y | | It
[ [
| I e
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and:

-0'"W N,
5 1

The convection-dispersion equation can be written in the

following form.

ax

n 3 N, 3 (DypsaNjy N.c,
) L 1) Njey 3, ( ) 1

8 _ 9
- ([Njuj} [Njcj]) N; ow ([vaj] [Njcj]) N

c'Wg N, - NN, 3c }
. i ii Y dA = 0
/

The first two terms can be expanded using Green's Theorem,

3 5N
J N, — (Dy; <) + N, 3 (DoooN. :ldx dy
A[ i 9x 3x i 5y ( %yj’)

oNs:  ONj aNj 3Ny
= b\l L a1, 2A4
l(A [Dllax Sy Dyo 3y X j dx dy

,
BN N
+ JC [Dll-é-}—{-ﬂ Nl dy + DQ_28y N]_ dx:)
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Substituting back into the previous equation and expressing

the final equation in matrix form, one obtains:

() DR () -

where:
AN . .
Lis = f (o Ay 2 anv oy, + 2 vN.) dA
ij A wf ox, 9x 3%, joa i ax o 1
8 2 o
= NN, d
it {A e 98
1
R, = ¢ ¥ N, dD - J DQBNi—g-; (e Ne, Al
A & c B
The time derivative e = _d¢ is written in fintie-difference

ot

AL

[ Do) Lol = D00, - [

The finite element technique allows one to use different types

1 ]
form as -— ( C‘t+at -c [t] and, hence, the final equation becomes:

of elements and different types of basis functions. Thus, Lee
and Chen (1974) have used triangﬁlar elements and linear and
quadrilaterals have been used by Segol et al (1975), Desai and
Contractor (1976), and Wu et al (1976). Results of programs with
different elements have produced similar results when compared

with other analytical results,

SUMMARY AND DISCUSSION
This report has summarized some of the techniques used in the
investigations of freshwater/seawater relationships common to

groundwater-flow systems of oceanic islands. The choice of the
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technique that is appropriate for a given aquifer depends on several
factors, including the data available to define the geometry and
hydrogeology of the aquifer, the cutput expected of the model, the
data available to calibrate and verify the model, and the economic
worth of the predicted response to the managers of the aquifer.
The technique of analysis should also be tailored to the peculiari-
ties of the aquifer under consideration. No one model has been
found to be best for all aquifers and all requirements. Thus, some
aquifers may not extend much in the vertical direction but may be
very extensive in the horizontal direction and other aquifers may
resemble strip oceanic islands. Existing data from observation
wells may indicate the interface to be sharp or diffused. All of
these points need to be considered in the selection of the model
that is appropriate for a given aquifer.

The numerical procedure used in a given model should also
be adopted after taking into account several considerations. The
memory capacity and execution speed of the computer may control
the number of nodes one can use in the model. Finite difference
methods have been developed for a wide variety of problems and
their convergence and stability characteristics studied for
linearized systems. The finite element technique has several
advantages of its own such as the ability to choose different types
of elements and basis functions and an easier way to handle certain
types of boundary conditions. If the overall geometry of the
aquifer is narrow and long, then it would help to have elements

that are narrow and long. The finite element technique allows one
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to select the shape and size of the elements to conform to some
other criterion.

Several numerical techniques have been developed to solve large
numbers of simultaneous equations. A technique that is efficient
in memory requirement and computational speed should be selected.
These techniques range all the way from Gauss elimination schemes,
solution of banded matrices, solution of sparse matrices, to the
latest frontal methods. It is essential that the solution technique
chosen be matched to the needs of the problem.

A numerical model which simulates the groundwater-flow conditions
beneath an island can be a very useful tool in managing the aquifer.
The model must be developed in consulation with all personnel likely
to provide data input and the model must be explained to and under-
gtood by those individuals managing the agquifer on a continuing

basis.
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