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ABSTRACT

A vertically-integrated shallow-water model has been developed to
address coastal circulation problems. It uses é trianguiar grid in
conjunction with the finite element method. The model accounts for tidal
changes, wind drag, lateral in/out flow and other factors. Partial results
of a sample computer run for Apra Harbor, Guam, are given. These results

have not yet been verified with field data.
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INTRODUCTION

Modification of coastal waters associated with construction and
operation of facilities can significantly alter the natural physical,
chemical and biological processes. Tropical coastal waters, where
extensive biological activities take place in the characteristic
shallow reef regions, are particularly susceptible to impact by coastal
modifications. As the result of accelerated development efforts, even the
most remote tropical islands are experiencing the effect of
man-made change. The Water and Energy Research Institute of the University
of Guam is often challenged by the task of evaluating the consequences of
such activities. As an initial step toward gaining insight into the
complexities of the problem, methods of assessing the impact on circulation
patterns are needed. Analyses of water mass movements and estimates of the
fate of dissolved and suspended matters are the fundamental requirements
for such studies. Théy are also essential elements for the sound
management of coastal resources.

There are two approaches for studying coastal processes: physical
modeling and numerical modeling. Physical models are very useful when
properly verified but they are very costly and time-consuming for a
small research institution., With the increased accessibility and
jmproved economy of high-speed digital computers, the numerical
modeling approach has become a practical tool for simulating coastal
processes. |

Ideally, three-dimensional modeling is most desirable but

uncertainties in boundary conditions and in eddy viscosities prohibit



its application to large-scale problems, Alternatively, the
vertically-integrated shallow water formulation is a practical approach
for tropical coastal problems provided that its lTimitations are
strictly observed. It is_an attempt to simplify a very complex problem
by eliminating dependence on the vertical coordinate. The term
"shallow water” is used to denote a water mass with ]ittle change of
the variables over the depth. There are a number of reports describing
the shallow water numerical models for circulation and dispersion in
well-mixed estuaries and coastal waters. The finite difference models
by Leendertee (1967} and Abbot et al. (1973) are particularly well
known. These models, however, are proprietary and not available to the
public. The finite element model of Wang and Connor (1975) is also
well known. However, the model has a reputation of being inefficient
and difficult for implementation.

Consequently, the Water and Energy Research Institute at the
University of Guam has undertaken an effort to develop a general
shallow water numerical model suitable for tropical coastal waters.
Three major attributes of the model have been emphasized during the
course of development: complete generality for a wide range of
applications, computational efficiency, and relative ease of
application. Two of the major causes of water mass movement, the
astronomical tide and lateral in/out flow, are accounted for by
prescribing the boundary condftions. The effect of wind drag is also
included for model generality. Lateral variations of density can be
included, but their distribution must be specified. An explicit
treatment of lateral density variation would require simultaneous

solution for the conservation of heat energy and salt balance along



with the momentum and confinuity equations, which adds excessive
complexities to the problem. The finite element method has been chosen
as the numerical scheme for its very flexible grid discretization.

This report is a swmmary of the development effort of such a
numerical model for shallow tropical coastal waters. This study is
intended to be only the initial stage of the rather ambitious aoal of
developing a general tropical coastal circulation and water quality
simulation technique to be utilized by engineers as well as by marine
biologists. Therefore, the content of this report should be viewed as a

chapter in the overall pursuit.



2.1.

FORMULATION
Starting with the fundamentals of mass conservation and force
equilibrium, a mathematical formulation for unsteady vertically

integrated flow is presented here. The approach is similar to the

work by Wang and Connor (1975), Leendertse (1967) and Hansen (1956),

although the choice of variables is different. It is intended to
include important steps of the development and to account for

assumptions and their basis., The numerical values needed in the

~ constitutive expressions are also presented based on the existing

methodologies.

Three—DimensionaI Equations

The formulation of the mass and monentum conservation for
three-dimensional continuum flow has long been established for an
Eulerian framework [see, for example, Daily and Harleman {1966}].

For a Cartesian coordinate system, the mass conservation is given

by

where p is the density of fluid; t is time; u, v, w are the
velocity cdmponents in x, ¥, z directions; and s is the internal
source or sink. Equation (1) simply states that the local rate of
change in mass within a control volume is the difference between
efflux and influx out of and into the control surface.

The force equilibrium for the control volume is given for

the horizontal x and y directions as:
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where the z-axis is directed 'vertically'upwards; 45 are the normal

and shear stresses due to molecular viscosity and turbulent
momentum transfer; f is the Coriolis parameter (f = 2 o sin ¢,
where @ is the phase velocity of the earth's rotation and ¢ is

the latitude of the location for the northern hemisphere); p is
the pressure; and m, and my are the internal sources of momentum.
The stresses Tijs i, § =1, 2, 3,are defined as usual, the first
index denoting the normal direction of the face on which the stress
acts and the second, the direction of the stress. The subscript
i, j, k is thé standard tensor index, the 1, 2, 3 directions being
equivalent to x, y, z. In the horizontal momentum equations, the
vertical component of the Coriolis force is dropped out by an
order of magnitude comparison.

The vertical force equilibrium is given by

3(pw) 3{puw) a{pvw) a{pw?) _
2% + 5X + 5y + a7 + prxv meyu
a(t,.) a(t,.) ar_.)
= . ap xz’ ¥z zz
3z e 3y © Tz (4)



where w, and wy are the x and y components of the earth's
rotation. An order of magnitude comparison applied to
Equation (4) leaves only the gravity and pressure terms as

significant, yielding the hydrostatic condition:

aP - .
3z - - Pg o (5)

At the free surface, the kinematic condition applies, i.e.,
d(n-z) | = [%n + yon an ] -
= =5 U=~ + vyt - W = 0 (6)
t 7=n ot 3x 3y 2

in which the effects of rainfall and evaporation are ignored.
As shown in Figure 1, n = n(x, y, t) is the free surface
displacement. At the bottom, where z - -h{x, y), the impermeable

condition is

d{z+h
t

= _a..b.. ! -.a..r.].. -
. [Jax tovge 4 w]z 0 (7)

where h = h(x, y) is the mean water depth as defined in Figure
].
For vertical lateral boundaries, the continuity of flow is

required:
ext.
ugng | =0 , i=1,2 (8)
int.



ext.

£45k4375 =0 L, i,k = 1,2, 3 (9)
int.

where £ijk is the permutation tensor, £]23 = 23]2 = 2231 =1,
£y30 = 22]3 = 4351 = -1 and all other elements are zero; n; is
a unit normal vector directed outward from the area of interest;
and int,, ext. are points just inside and outside of the boundary.
Equations (8) and (9) state that normal and tangential velocities
Just outside and inside the boundary must be equal,

On a1l the boundaries force equilibrium must be satisfied.

At the free surface,

.
S san o b pdn o oan an
T, + P Poy L T yby rzx] y (10)
€ pn [ a0
y 2y ay Ty 3% Tyyay T2y 7en (1)
.pS san San . |p .. 8n _ an
P™ 4 Txox T Tyay [ P Txzox Tyzay * rzz] (12)
Z=n
and at the bottom [z = - n(x, ¥}1,
b bsh _ oh ah
LI P-;; = [- (P—TXX)BX + Tyxay + TXZ];;:..h (13)
b b3h - 8h _ oh
Ty -~ P 3y [Txygx (P Tyy)é_ sz (14)
z:—



In Equations (10} through (15), superscripts s and b denote
surface and bottom respectively.

On lateral boundarie;, the stresses must be continuous, i.e.,

ext.
[normal stress); . = O (16)
ext,
[tangential stress] = 0 (17)
int.
Finally, the initial flow field must be known:
Uy = u_ . 1=1,2,3 (18)

For a complex arbitrary geometry, the three-dimentional
problem as formulated is very difficult to solve. Numerical
solutions not only require excessive computer resources but are
obstructed by the difficulties in incorporating the proper
boundary conditions. In shallow coastal areas where properties
of the water column are nearly homogeneous through the depth, the
problem can be significantly simplified by removing the explicit
depéndence on the vertical coordinate. In the following subsection,

- this process is formally treated in detail.
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2.2 Vertical Ihtegration

In shallow coastal waters, the dependence of flow on depth
is not very profound and vertically integrated equations may
adequately describe the current field. The vertically integrated
approach deals with the mass transport through any cross section,
However, it yields no information on the vertical velocity profile.
As a first step, the water density is assumed.constant in the
vertical direction, i.e. , =Ip(x, ¥, t). The shallowness of
water also implies that the vertical components of velocity and
acceleration are relatively small,

The governing equations are integrated over the entire depth
to eliminate the dependence on the z-direction. The mass conser-

vation equation [Equation (1)] is integrated as follows:

T} n

n 0 n '

30 a(ou) oo | afpv) 3(ow) .

{ op 4z + - 4z + 5y dz + ~é%—)dz sdz (19)
~h -h ~h -h ~h

Applying the Leibnitz's rule, it follows that

4

N n
9 LN L3 - an 3a(-h
at J pdz o3t * X pudz - pu X el h ax

~h -h n

n

3 . an 3(~h)
+ L - = - =

5y pvdz - pv ay T oY 3y + pw oW Qg

J-h n ~h n -h

Finally, applying the kinematic conditions on the bottom and the
surface yields

10



B(bH)- . 3(9Qx) . 3(9Qy)

ot 3X 3y = el (21)
n
where H = J dz = h + ¢ (22)
-h
n
Q = J udz (23)
-h .
i}
Qy = J vdz (24)
-h
Qs = internal source/sink flux (25)

The internal source/sink,'Qs, represents the net rate of volume added
per unit area and is inc1uded here for generality (i.e., inclusion of
precipitation, power plant ihtake/discharge ete.).

The integration of the x- momentum equation [Equation (2)] is

analogous]y'performed to yield

3 (OQX) 2 " 2 3 K 3 "
5t 3w {ou?) dz + 3 (pUV)dZ—pry * = p dz
-h -h -h

s 3H b 3h _
P g P =0 (26)

Invoking the Boussinesque approximation [see, for exampie, Phillips
(1966)1 but retaining the real density for the pressure term,
Equation (26) is simplified to

11



3Q n n )
=Xy 9 2 3 - 3 _
5T T ax J usdz + 3 j uvdz ny t g (Fp Fxx)
~h -h
3 Ti - Tg ® 3H 3h  ap ., oh
Ty Tyx T M Thgax T WMax T oMg =0 (2
in which
1
Fo = podhn + 5 0oan® + 1 aogH? + py (28)
- 1M
Foy = D—J 2 (29)
. o )y
F L
yx * E‘;[ Tyx z {30)
-h
n
M, - J n,d2 (31)
-h
With
P =p, *tbp g
0o = Mean density ;
anq
Ao = Tocal deviation (instantaneous)
Simitarly, the y-momentum equation becomes,
I AN 9. 2 2 -
5t * ax J uvdz + 5y j vidz + fo + 5y (Fp Fyy)
' - -h
3 5 - p> aH ah _ 8p_,,3h
-2 e ' S N |, S|, =0 32
X Txy ¥ oy My p, 3y ~ 9%y QQH%‘J? (32)

12



where

Fo=2 " o 4 3

Xy - p—o—j Tyx z (33)

' -h

Fo=L Mg

vy " oy J Tyy (34)
“h

M "o g

y © J my z (35)

~h

2.3 Boundary Conditions

Definition of correct boundary conditions is the most critical
part of the formulation prodess. Insufficient boundary information
usually results in non-unique solutions while too much may lead to
no solutions at all. Although there is no mathematical proof of
existence and uniqueness of solutions to Navier-Stokes equations,
the present problem is simple enough to detuce necessary boundary
conditions by engineering intuition. |

By analogy to the Newton's second law governing the motion of a
single particle, it is seen that the generalized requirement to the
present problem is to specify an initial condition and the force or
the discharge on the physical boundaries. |

The initial condition is expressed as

U {x, y) = Uy (x5 ¥)
¥V (x, y) = Vo (x, y) at t =0 (36)
H(x, y) = Ho (x5 ¥)

On the physical boundaries two alternatives are possible as
.mentioned earlier. On boundaries where discharge is specified the

13



2.4

normal and tangential components must be prescribed, i.e.,

Qn = “nqu + “nyQy 1 prescribed {37)
QS = anny + “nyoy : prescribed (38)
where o is the direction cosine, oy Peing cos (n, x) and oy = €OS

(n, y).
On the boundaries where the external force is specified, the
normal and tangential specific forces (force per unit width per unit

density) are:

= 2 2 N :

%n = -ﬁj + aanxx + “nyFyy + zanx“nnyy' prescribed (39)
= (02 . g2 - . :

Frs = (@, oy Py * “nx“ny(Fyy Fx): Prescribed (40)

The free surface elevation can be found by the continuity equation

[Equation (21)].

Internal Stresses

In order to close the formulation, the internal stress terms
Txx* Tyy and Ty ™ Tyx mus? be expressed as functions of the
integrated flow variables. As with the common practice for the
closure of turbulent flow problems [see, for example, Schlichting

(1968)], the stresses are represented by means of the eddy viscosity

concept. Although this approach is based on a samewhat imprecise

foundation, it does provide a convenient expression which simulate

the real éffects of internal friction and transfer of momentum.

14



Following the concept of the Reynolds stress for three-
dimensional turbylent flow [see, for example, Daily and Harleman
(1966)1, the ensemble averaging of an instantaneous velocity
product is introduced. Assuming the flow field s essentially

random, the instantaneous Tocal velocity components U, V may be

expressed as.
U=su+u' = (0+4) + (u® + u'°) (41)
Vavev = (V+y')+ (v°+ v'®) {(42)

where u, v are ensemble averages; u' and v' are fluctuation
components whose ensemble averages are zero by definition; U and
Vv are vertically averaged values of u, v:; G' and v' are vertical
average values of uy', v'; y° and v° are vertical deviations of u,
v from i, v; and u'® and v'° are vertical deviations of y', v'

from u', ¥'. The product Y-V is, thereforg, written as

U-v

- - - - -4

uv v o+ oav® o+ gy + 'y

+ EIGI + leu + lelo + uo; + uog:

+ uova + uovlo + UIGG ¥ UIOGI + ulovlo (43)

Since all terms with just one prime {turbulent fluctuation) are
averaged out, the ensemble average of Equation (43) results
<UV>ensemb]e = UV R Uv® + Q'Y+ gly'e
+ UOG + u°y° 4+ UIQGI + y'oy'e (44)

Further, averaging over the depth yields

15



n

n
J <UV>ensemb1e dz = %-(QXQy) * j <utvt ¥ u'm“'m}ensemb]e dz
-h -h

n
+ J uv® dz (45)
-h

The second term on the right-hand side represents the turbulent
Reynolds stress and the other two terms arise from the momentum
transfer due to the vertical velocity shear. By analogy to the
Prandt1's mixing length theory [see Schlichting (1968) for detail],

the following functional relationship can be deduced:

" T: X
= ——..j._\j__ L T . - LT
inxj t oy <(uiuj)> ensembYe ~ UYjYj } dz
-h
3Q. 2Q.
= —-...J_ —.....'_ 3 1 =

In the above expression, €4 j s a symmetric apparent eddy viscosity
coefficient matrix which is a function of flow condition,
For the anisotropic situation, the directionai relationship

between eij and the local mean current is

1 ¢! o
sij - [ Q Ez] (4?)

with the major principal axjs of €i; in the direction of the
local mean current. The €4 in the global x-y coordinate is

expressed by rotation as r

cos8  sing ey O cosé  sine
€.ij = . (48)
global {-sine cose 0 €2| |-sine  cose

16



2.5

where superscript T indicates transpose and 8 is the angie from
global x-axis to the local mean current direction.

As to what values of €43 should actually be used must unfortu-
nately depend on experience or trial and error since the explicit
functionaf representation is not possible. Values ranging from 10°
to 105 m2/sec are frequently cited for the principal direction of
€15 and the ratio of g1 to €2 is normally in the range of 10 to 60
[Wada, {1972)]. In numerical experiments conducted during the
present development, values of up to 10* m2/sec have not affected
the results appreciably. In the computational point of view, the

inclusion of Fx « is a significant advantage since it introduces a
i%] '

damping effect for short wave ripple noise.
Bottom Friction

Previous modeling efforts for vertically integrated flow
[Leendertse (1967), for example] have shown that the friction due to

the bottom shear can be adequately represented by a quadratic

expression:
Do (a2 (49)
x © f P My Sy
b . ¢ o (g2 +q2)} El (50)
Ty T TR T Y

where C¢ 1s a non-dimenéional friction factor.

The roughness coefficients of Manning or Chezy are frequent1y
and successfully used to relate the value of Cf to bottom roughness
although they were origina11y'derived from measurements of steady

flow in pipes and channels. For fixed roughness, Cf relates to

17



2.6

Marnning's n and Chezy's C as follows:

2
Ce = ﬁg-g (Manning) (51)
Ce = é%— {Chezy) (52)

Values of Manning's n are only valid for fully developed turbulent
flow which is usually the case in coastal waters. For other flow
regimes, the use of other approaches, such aspDarcv-we{sbach's fows
may be necessary.

A point of caution must be given here with respect to the
limitation of the vertically integrated approach. Since the bottom
shear stress is related only to discharge per unit width regardless
of the velocity profile, the bottom friction cannot be represented
properly for flows with profound vertical variation such as might
océur for a strong wind-driven surface current with return current:
underneath. This is the most significant Timitation of the verti-
cally integrated approach. iiHowever, the initial assumption of vertical

homogeniety is considered to exclude such situations.

Wind Stress
The wind stress on the water surface is commonly represented
by the following semi-empirical expression:

T, = p, Cp Ui, : (53)
where o, is the density of air (~1.2 kg/m®); Ury is the wind speed
at 10 m above the surface; and CD is the wind drag coefficient.

- The evaluation of CD for water surface is not a simple matter

because of the surface deformation and wave formation. Experimental

values cited in the literatﬁre [Denman and Miyake (1973}; Heaps

18



2.7

(1969); Whitaker, et al. {1973);: Wu (1969); and others] scatter

widely from site to site and for different wind conditions. Among

numerous proposed empirical expressions, Wu's relationshi
on extensive ocean data seem to give the best fit. Wu's
fitting is divided into three flow regimes as
3 -3
1.25/U3 - 10 for Uyy < lm/sec
Cp= % 0.5-U% . 107 for 1 < Uy < 15m/sec
2.6 . 107° for Uyo > 15m/sec

Even with the Wu's best fit curve, data scatter with a fa
However, considering the complexities of air-sea interact

an error is unavoidable and tolerable.

Summary of Closed Formulation

For convenience, all the pertinent equations for the

ps  based

curve

(54)

ctor of 2.

ion, such

vertically

integrated formulation are summarized below in a closed form.

Consenvation of mass:

it Tty T
X-momentum:

3q, a(lQ ) a(Uq,) a(F -F. )

X X Yo p XX
at + ax * ay ny * IX

oF '

X 1 5 b 1 s aH ah
-~5§—+90(Tx-rx)'Mx"¥(p ax T oedH 5y
3h

—gnﬁ-o

19
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y-momentum:

3, a(yQ,) 9(3Q,) a(F -F )
¥ X hi P Yy
at * ax * 3y * qu * y
aF
Wy o1 s by 1 s 3H 3h
X +-p0 (Ty Ty) My 0 (p ﬁng ay)
- gn 2 =0 (57)
with the constitutive relations:
5 _
F =ghn+£gn2+ééggﬂz.+p—H (58)
P % Po
F ( P DU (59)
Y s 14 ] = 1}
xixj €ij BXy  3X;
Initial conditions:
H{x, y) = Hy{x,y)
Q. (x, ¥y} = Q, {x, y) at t =0 (60)
o .
Q, (x, y) = Qyo(x, y)
Boundary conditions:
Qp = onQy ¥ 0‘nyqy
prescribed (61)
Qs = -onyly nqu
or an = - Fp anxx nyFyy + Zan“nnyy
\ prescribed (62)
= (o2 _
Fos = {opx — @ ny)ny “nx ny(Fyy Fax)
where %y = cos{n, x) and Sy = cos{n, y)

20




Bottom shear stress:

Q
Cro(Q} + 02)* ;X

Q
y = Cee(2 + 2yt ¥

With expression of Cf given by Equation (51) or (52}

= o

T

or

T

Wind stress:

TS = paCDUfg

where Cy s given by Equation (54)

21
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METHOD OF NUMERICAL SOLUTION

The problem presented in the preceeding chapter is of such
comp]exities that the solution can be obtained only by a numerical
approximation technique. The almost identical shallow water
problems have been dealt with in the past by many mathematical
modelers using the finite difference method with a variety of
assumptions and time-integration schemes (Hansen, 1956; Reid and
Bodine, 1968; Heaps, 1969; Simon, 1971; Abbot et al., 1973;
Leéndertse, 1973 and others) and by a few using the finite element
method (Gallagher et al., 1973; Taylor and Davis, 1972; Norton et
al., 1973; Wang and Connor, 1975). Although many of these previous
numefica] modeling efforts were quite successfu? at least for site
specific cases, none of them made program listings or user's
manuals available-to the public for quite understandable reasons.

The finite difference method (FOM) is a pointw}se approximatio.
to the governing equations by replacing the continuous derivatives
by discrete difference expressions. Its app?icatioh to the present
shalIoﬁ water problem would be rather straight forward, although
extremely tedious, since the numerical behavior of FDM is relatively
well understood. In addition, the formulation of FDM does not
require advanced mathematical knowledge except simple differential
ta1cu1a$ and can be easily understood by intuitive physical analogy.
However, when irregular complex geometry or unusual specification
of boundary conditions is encounterad, the FDM technique exhibits
its inherrent inflexibility. The finite element method {(FEM), »n
the other hand gives a piecewise approximation to the governing

equations and a solution domain can be analytically modeled or

22



3.1.

approximated by replacing it with an assemblage of discrete
elements. Since these elements can be put together in a variety
of ways, they can be used to represent exceedingly complex shapes.
Furthermore, FEM is inherently advantageous in the generalized treat-
ment of various boundary conditions because of its integral formu-
lation. Although FEM requires somewhat more complex mathematical
treatment than FDM, the possibility of using arbitrary grid
schematizations and the superior handling of boundaries make this
technique particularly attractive for the present purpose of
developing a general shallow water circulation model. |

The rigorous mathematical foundation, in partfcu]ar the
integral formulation, on which the finite element method is based,
is best left to the standard textbooks {(Zienkewicz and Cheung, 1967
Zienkewicz, 1971; Connor, 1973; Huebner, 1975), and therefore, only

the practical computational aspects are presented in this chapter.

Integra1 Form of Governing Equations
Following the standard procedure (see, for example, Connor,

1973}, the equation of continuity [Equation 55] is transformed into

an integral form as

n 40 3Q _
3H X —
js‘z["a"c”'“a'i"J'a_yx"Qi]GHdA_o (65)

where Q is the interior of the domain of interest; ﬁ, ﬁx and ﬁy are
approximate functions (trial functions) of H, Q, and Qy; 6H is an
assumed function (test function).

The momentum equations [Equations 56 and 57] with the boundary

conditions [Equations 61 and '62] are transformed as follows:
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3Q . . ]
L{[&—" + 232 (Q,) + gy (i, )-fQ, + ;—O<T;-T:>-Mx

SaH ~3h)

o050+ 0B~ gnil 160,-L(F-F,) (50,

yxay(aq )]}dA j Loy (Fry™ p) nyFyx]aQ de

+_J(PF anpﬁQ de _J;Q[anan anyqs Q. ]60 de = 0 (66}

2
L{[ﬁl + 390, )+2-(70, ) +FQ, - olryry 0)-f,

$ aH “ ah
- 5=(p% 3y * dogh 3 )gn y]csuy-[(Fp yy) 5y (60,

- Py (60, )]}dA J JLony! yy-Fp)]GQ ds

+‘J-F nprﬁdez +_j’ [any n anxQS-Qy]Gdez =0 (67)

where the superscript, *, indicates a prescribed boundary value, and
for the Tine integrals over the prescribed force boundary e and
flow boundary FQ the following expressions are used for the x and y

components of force and flow:

Uy Fex™ p) %yFyx = Fix (68)
xFxy * iy FyyFp) = Foy | (69)
Ay~ onyls = O (70)
%xds * 2y Uy = Qy - oD

A detailed mathematical review of these integral transformation can

be found in Wang and Connor (1975)}.
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3.2 Finite Element Formulation

The integral forms of the governing equations are general and
can be applied to any consistent type of element. In two spatial
dimensions, the 1inear triangular element is the simplest and best
Suited for the pnesent-objéctives;:*Thé'étandard-pkotedﬁre'1s to develop
the functional relationship for a typical element and then assemble
the contribution from each element to obtain 4 system of equations.
Following Huebuer (1975), the triangular element is based on a 1inear

expansion for the variables, i, e.,

Ho o= [e] H® (72)
O = b1 ¢S (73)
- - e

Qy = [4] qy (74)

where the superscript e denotes the nodal values, [4] is the shape
function defined by
(6] = [&1 €5 4] A (75)

and £. are the natura) coordinates of the element defined by
i ) ; :

in which 3 = X, - X (77)
bi = YJ - Yy (78)
¢; = XYk - XY (79)
1 xy 9,
. ZA = |1 X2 Vo . . (80)
1 x5 ¥y

{1, 3, k) designates the element nodes (1, 2, 3) numbered counter-
clockwise. Thys, a variable, y for an element may be expressed in

terms of the shape function, ¢ and nodal valyes {we} as
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v o= L6 - ) - (81)
where {we} is a column vector of nodal values of v for the element.
The finite element analog of the integral equation {Equation

(65)] for an element is then,

e,T T LI &) M
ey f, 0] (Codt5g ¥ + 10, bzl T+(Q) 15L6)

- [4] {Q‘f}}dA =0 (82)

where superscript T indicates transpose.
In order to achieve symmetry in the total coefficient matrix,
the continuity equation can be modified by multiplying by gh without

tosing generality as

S gndt + haqi+ hi{ii‘kw hQ }stA = 0 (83)
pt3Mt ¥ g F ahgym - gnly =

which results in for an element

a .
{aHe}TfA (17 { 9([61h®1) (61628 1og([410n°1)[612 [61(Q°}

* 9T NI L -0 CIEN LI feh -0 (80

The integral over the entire domain can be obtained by summing the

contributions from each element as

3Q aQ |
fs;{gh—g% +gho® + ghoL - ghQ JoHdR = 0
el T T e oH® €149 e
3. ofTfy 1ol o (o1 NI g o102 ta100)
1=1 i

o+ g([cp]{he})[¢]%[¢]{0§}~g([¢]{he})[¢]{0$}}dn =0 (85)

where NE is the total number of elements in the domain. In a

simplified form Equation {86) .is expressed as
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where

. : N
By carrying out the summation ZE'

equations

%E fGHei}T{[Ai]{QEFi}+[Bi]{ 13408710087 1-ral 1108 1) dns
i=1 hd 5t x (O OB THQ 1)-[A) 1105 }}dA-o (86)

[AL] = , 9061 To1ChI[4]0n

Gh]_ + 2h, + 2h3 Zhy + 2hy + ha

_ gAi
= i) 2h1 + 2h2 + h3 2h1 + ﬁhz + 2h3

2ha +h2 4 hy hi % 2h, + 2hy 2hy + 2h, + g

) A, 2 1 1
[A'] = [¢]T[ 1dA=+1 [1 2 1]
At 12 171 5

(8,1 = o9 Lol (LoTth)) 2 [4] 0n
hia hia hia
g[Ai] 1491 142 143
"‘"T h231 hzaz hzaa
i
h3a1 hgaz hgag
(851 = 2 9 o1 (Lolth}) 2 [4] dn
y A, 3y

hibi  hib, b,
haby hab,  hybg
hsb, hab, hsb,

glA;]
2A,

i=1
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s yields the following system of

(87)

(88}

(89)

(90)



T aH, .- ) .
{sH} {[Ah]{3?}+[3x]{qx}+[By]{0y}'[Ah]{Qi}} =0 (91;
Since {§H} is an arbitrary function, the terms within the large
braces must vanish resulting in simultaneous equations for every
node point:
aH )
(A, 1Gp+08, 140, 3+08, 1Q }-[A, 140, = © (92)

The equivalent system equations for the momentum equations [Equations

(66) and (67)] can be obtained in an analogous manner resulting in

2

AT 638,17 (n}HE,, HQ MHE,, HQ -FIATIQ )-[6,1=0  (93)
e T i

[AT 6t~ [8, 1T (n}+{E, HQ HHE,, Q14 (ATEQ,)-[6, 10 (34)

where [A] is assembled from Equation {88). The terms in the above
equations correspond to the contributions of convective acceleration,
Tinear portion of specific force, eddy viscosities and Coriolis force.
The remainder is lumped in [Gx] and [Gy]. Since eddy viscosities Eij
are element property, [Exx]’ [Eyy], and [Exy] = [Ey*] are assembled
from

[E$i] ) A ([E§j1[¢’i]T[¢’j]+5115j1£§1[¢,2]T[¢s2]

X2 [0,21"[0.2]) dA (95)

where aij is the kronecker s§.

Defining a new nodal variable by coupling Qx and Qy as

() = [00, Q@ -++-+++ QQ, ] (96)
node 1 node 2 node MAXNOD
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Equations {(92), (93) and (94) can pe simplified to

(A2 + 18,700 - (6] (97)
(A=3e8 - 18:37tn) + [elear + 030y - [6,] (s8)

where [6,] = (A, J(Q;} and [a,] = [AhJ. [A2]. [8.1, [€], (0] and

Equation (96).

Since g% z-gg, Equation (97) becomes
(4120 + [B1eqy = [6,] (99)

The partitioned form of Equations (98) and {99) is then

[B] | tn} | feg,)

_________ LA N el MR
? D L A S T =777 {100;
2xNM { (0] ; (A, {%%} [B]T§[0]+[D] {Q} {GQ}
NM  2xNM

It is now apparent why the modified form of continuity equation
[Equation, (83)].has been chosen rather than Equation (82). Complete
symmetry op skew-symmetry is achieved in the total system coefficient
matrices. Thig effective approach for the shalTow-water equations

was first demonstrated by Wang and Connor (1975).
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3.3

Time Integration

Efficient and stable numerical integration is one of the most
important aspects of the model development. A typical coastal problem
would involve hundreds of node points and time integrations over
several tidal cycles. The choice of integration scheme depends on the
requirements of stability, accuracy, and computational efficiency both
in time and memory size. The fully implicit scheme, although desirable
in view of stability characteristics, has been discarded since it
requires a prohibitively large memory size. Thus, choice has been
1im1ted.to the variations of the explicit scheme. For its relative
simplicity and acceptabTe stability characteristics, a self starting
split time method has been adopted in this study. The method is
analogous to the leap-frog method for the finite difference
formulation. Using the same notation for Equation 98 and 99, this

integration scheme is expressed by
Ta T (™ - "4y« atlB] (@ = atl,] (101)

i .
(10" - (™ - atl8)Tm™? - atlGy] - st (TICT-DO(Q" (102)
For given initial conditions, ("t and {Q}", the solution proceeds
first for {n}n+% and then {Q}n+1 in a time staggered manner,
Explicit stability criteria tor finite element formulations such as the

present numerical scheme have not been established. An approximate

stability measure based on norms was suggested by Wang and Connor
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(1975) for such a scheme. It is an analogy with the

Courant-Friedrichs- Lewy condition for the finite difference scheme,

i.e,

At <Atcr= /—‘TEﬁT"_" (103)

where As is the characteristic node spacing, H is the water depth, and
At.. is the critical time step for reference. Oyr experience with the
present model, however, indicates that At can exceed At by up to 50%

depending on the particular appiication,
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Figure 2. Mean Low Water Depth of Apra Harbor {meters).
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Figure 3. Finite ETement Discretization.
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i —— = =0.03 M/SEC.

IBFRIC = 2
IDEPTH = 1
IEDVIS = 2
ININD = 3

Figure 4. Velocities Averaged Over Depth at t=5,580 sec.
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% - I\ ——= =0.03 H/ste.

Figure 5. Velocities Averaged Qver Depth at t=27,900 sec.
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SAMPLE MODEL RUN

Inner Apra Harbor, Guam, was chosen for a sample model run both
because of its well-defined physical boundaries and relatively constant
depth (Figure 2). The harbor was descretized into 133 elements with 87
modes (Figure 3). The computation was carried out for 1.5 tidal cycles
(66,960 seconds) from a low tide with an amplitude of 0.3 m. This
approximate, the October 27, 1982 flood tide situation. As expected,
in spite of the narrow openfng of the harbor, the small tidal amplitude
generates only very weak currents. Current velocities (typical
computer output) for t = 5,580 and 27,900 seconds are shown in Figures

4 and 5.

Field data were also obtained for the October 27, 28 flood tide
situation. Calibration of the model has not yet been attempted but is
expected to be difficult Because of the low current velocities
predicted by the model and the influence of wind on drift drogues

observed in the field.
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