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ABSTRACT

The data presented herein represents Phase II of a two part program to evaluate levels of heavy
metals, polychlorinated biphenyls (PCBs) and polycyclic aromatics (PAHS) in abiotic and biotic
components of four harbor environments on Guam. Phase I focused on sediments and clearly
identified areas of enrichment for all three contaminant groups in Agana Boat Basin, the outer
portion of Apra Harbor, and the Merizo Pier area. The data from this investigation were
presented and discussed at length in an earlier report (Denton et al. 1997). In the present
study, all four harbors were revisited and dominant biotic representatives were collected in
order to evaluate contaminant movement into marine food chains. The sampling sites ranged
from relatively enriched through to relatively clean and were identified during Phase I of the
study. The dominant biotic groups considered were algae, sponges, soft and hard corals, sea
cucumbers, bivalves, and fish. Representatives of each were collected from all four harbor
locations. In addition, a limited number of ascidians, an octopus, and a stomatopod crustacean
were collected from Apra Harbor.

The findings of the survey were evaluated, following a detailed comparative analysis with
published findings, for similar and related species from elsewhere. It was concluded that
Guam’s harbor environments are generally clean by world standards, although mild to
moderate enrichment of the biota with arsenic, copper, lead, mercury, tin and PCBs was
evident at certain sites.

Oysters from Agana Boat Basin and Apra Harbor were heavily contaminated with copper and
zinc. Sponges, soft corals and sea cucumbers from Apra Harbor also contained relatively high
concentrations of arsenic, presumably reflecting releases of this element from filel combustion
as well as from past uses in biocides and wood preservatives. All three biotic groups from this
location were also relatively enriched with PCBs, a feature they had in common with the
majority of fish captured here. Sea cucumbers and fish from Apra Harbor also contained
higher mercury concentrations than specimens from the other harbor sites.

The data for tin contrasted sharply with the findings described above. For this element, levels
were appreciably higher in sponges, soft corals and sea cucumbers from within the smaller boat
harbors compared with those from Apra Harbor. These findings are in line with reports from
elsewhere, that marinas and small boat harbors are generally more prone to tin (TBT) problems
than larger ports and harbors; a factor attributed to the higher density of boating traffic and
permanently moored water-craft. However, they are not supported by our previous sediment
data for tin at each of these locations.

None of the fish or shellfish contained levels of any contaminant that exceeded current U.S,
FDA food standards or guidance limits. The absence of an FDA food standard for copper and
zinc was duly noted in tight of the high levels of these metals in oyster from Agana Boat Basin
and Apra Harbor. Levels found in these bivalves frequently exceeded the Australian food
standards for both elements. There was no evidence to support an increase in the biological
availability of silver, chromium, nicke! or PAHs at any of the harbor sites examined.
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INTRODUCTION

Historically, the sea has been a major source of protein to the people of Guam and,
notwithstanding the variety of imported foods, fishing is still an important occupational and
recreational activity today. The fringing reefs, lagoons and offshore waters provide habitats
for a great diversity of edible marine life, including a variety of algae, mollusks, crustaceans,
sea cucumbers (béche-de-mer), and many different kinds of fish. Local inhabitants commonly
harvest representatives from each of these groups for sale or home consumption (Amesbury et
al. 1986).

By virtue of Guam’s geographic location, these resources have been relatively isolated from
the adverse effects of pollution generated by the industrialized nations of the world.
However, Guam has undergone tremendous commercial growth and development over the
last 10-15 years, particularly in areas related to the tourism and hospitality industry. In
addition, the local population has grown appreciably in the wake of improved living standards
and a generally healthier job market. Such expansions, although economically desirable on
one hand, have greatly contributed to Guam’s waste disposal, pollution, and environmental
management problems on the other.

Up until a few years ago, much of the marine environment surrounding the island was
considered to be pristine. Today, coastal waters along much of central Guam’s western
shoreline are now utilized for a variety of water sports including recreational and commercial
boating and jet skiing activities. Moreover, a number of bays on this side of the island are
inundated with storm water runoff from hotel car parks and adjacent highways during the wet
season, while others receive wastewater discharges from several of the isiand’s primary
sewage treatment plants.

Further anthropogenic expansion into Guam’s coastal waters seems almost inevitable given
the long-term growth and development predicted for the island. Therefore, it is imperative
that the ecological impact of such progress and its effects on the delicate balance of the
environment be carefully monitored, in order that a harmonious and viable ecosystem can be
developed and maintained.

The precise impact of man’s current tevel of intrusion into Guam’s coastal waters is largely
unknown. We also know very little about the degree of chemical contamination derived from
the activities and events outlined above, and the accompanying water quality changes they
bring about. Clearly, such information is vital if the ecological, recreational, and commercial
potential of our nearshore waters is to be preserved.

Recogizing this important need, the Guam Bureau of Planning established the Guam Coastal
Management Program (GCMP) to develop management strategies for the sustainable
development of resources within this environmentally sensitive area. This included the
identification and evaluation of major coastal point and non-point pollution sources, the
identification of potential health risks to consumers of contaminated fisheries, and the
establishment of a sensibly planned and readily implemented pollution-monitoring program.
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As a first step in this direction GCMP approached the Water & Environmental Research
Institute (WERI), at the University of Guam, to undertake a preliminary baseline survey of
heavy metals, PCBs, and PAHs in abiotic and biotic components from four harbors on the
western side of the island (Fig. 1). The rationale behind the study was that harbor
environments are often enriched in various organic and inorganic pollutants derived primarily
from watercraft of one sort or another. Other important contaminant sources in these areas are
wind-blown dust and surface runoff from a multitude of contributing harbor activities. Thus,
marine harbors usually represent “worst case” nearshore conditions within any particular area.

The contaminant groups mentioned above are important both from an ecotoxicological and
public health standpoint and included representatives that are prevalent and persistent in the
environment, have a high bicaccumulation potential, and exert harmful effects on biological
systems at relatively low concentrations.

The major objectives of the study were as follows:

a Determine the presence and abundance of a range of heavy metals and several PCB
and PAH congeners in sediments and biota from strategic sites within Agana Boat
Basin; Apra Harbor, Agat Marina and Merizo Pier.

a Highlight localized “hot-spots” and specific point sources of contamination.

0 Develop numerical sediment quality guidelines to assist in the decision making
process related to any future disposal of localty dredged sedimentary materials at sea.

0 Evaluate the bioaccumulation potential of sediment bound contaminants within
identified areas of enrichment, identify vulnerable foci within local marine food
chains and indicate which organisms exhibit the highest bioaccumulation factors.

a Initiate the provision of a sound database with which future levels may be compared
and evalvated.

0 Provide data of immediate public health importance for those species frequently
consumed by man.

O Assess the degree of background contamination at each location by reference to levels
reported in clean and poiluted environment elsewhere and with special reference to
other tropical regions of the world.

o Provide a bank of data upon which GCMP and others may draw when evaluating
environmental problems relating to the management and maintenance of water quality
and the protection of marine resources within Guam’s coastal waters.

The study was conducted in two distinct phases. Phase 1 focused on the chemical analysis of
sediments taken immediately adjacent to suspected sources of chemical contamination (piers,
jetties, docksides, refueling stations, navigational channels, etc.) as well as along fixed
transects that followed presumed chemical concentration gradients. Overall, a total of 46 sub-
tidal sites were examined. The survey clearly demonstrated enrichment of all contaminant
groups in Agana Boat Basin, Outer Apra Harbor and Merizo Pier, although by world
standards, the majority of sites within each location were considered to be relatively clean.

-4 -




Fig. 1: Guam Harbors Visited
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The highest levels of all three chemical groups were found at Apra Harbor, the largest and
oldest port on Guam. Here, moderate to heavy entichment of various heavy metals, PCBs and
PAHs were identified in sediments collected in the vicinity of Hotel Wharf, Commercial Port,
and Dry Dock Island. The lowest contaminant levels were almost always encountered.at Agat
Marina, a recently constructed small boat harbor to the south of Agana. Full details of the
study are presented in an earlier WERI technical report (Denton ef al. 1997). Copies of this
report are available upon written request from the Director of the Institute.

The study reported herein comprises Phase II of the program, designed specifically to monitor

heavy metals, PAHs and PCBs in marine organisms from within each of the four harbor"

locations mentioned above. Emphasis has been given to dominant flora and fauna from clean
and contaminated harbor sites identified during Phase 1. These have included organisms from
vatious trophic levels, in addition to those frequently harvested for human consumption. The
primary focus of the investigation was on biotic groups popularly used as bioindicators of
chemical pollution, e.g., macro algae, bivalve mollusks and certain fish. These organisms
generally possess little to no regulatory capacity for some or all of the above contaminants and
hence, tissue levels mirror biologically available amounts derived from their immediate
surroundings. In addition to these so-called ‘sentinel’ species, some attention was directed
towards the collection and analysis of other leading ecosystem representatives, including
sponges, ascidians (sea squirts), corals and holothurians (sea cucumbers).

This program is the first of its kind for Guam and, indeed, for Micronesia, and should
therefore command the interest of regulators and policy makers involved with the protection
and management of coastal waters within the tropics and neo-tropical zones of the world,




MATERIALS AND METHODS

1. HARBOR SITES
Genera! information relating to each harbor studied is given below. Biota collection sites
were based upon sediment contamination profiles identified during Phase 1 of the program.

1.1 _Agana Boat Basin:
Agana Boat Basin was the most northerly of the four barbors examined during the present

study. It is located in the western shores of Agana, the capital and business center of the
island, and has been used for small pleasure and commercial craft for over 40 years. The
facility is divided into two discrete areas by a breakwater that separates the inner permanent
moorings and floating walkways from an outer lagoonal area. It is protected from the ocean
swell by a larger outer breakwater and connects with the open sea via a deep-water channel
along its eastern edge (Fig. 2). The collection of biota focused on the inner boat basin, a
relatively contaminated area with restricted water circulation. Sediments from this section
contained high levels of copper, lead and zinc, and moderate levels chromium, mercury, tin,
PCBs and PAHs (Denton ef al. 1997). Primary pollution sources in this area, apart from the
high intensity of watercraft, included a storm drain outlet, a refueling station and a nearby
wastewater treatment plant, Biota of interest that were absent from the inner boat basin were
collected from the outer lagoon (see Fig. 2)

1.2 Apra Harbor:
Apra Harbor is the largest harbor on Guam, and has been used by small pleasure and

commercial craft and larger commercial and military shipping for more than a century.
Geographically it is divided into an inner and outer area. The US navy has used the inner
harbor as a ship repair and maintenance facility for the last 55 years. Sediments from this area
and the immediately adjacent portion of the outer harbor are known to be high in copper,
mercury, nickel, lead, tin and zinc (Belt Collins 1993). Sedimentary levels of PCBs and
PAHs in this area are currently unknown. The outer harbor includes Sasa Bay, a safe refuge
and permanent mooring site for a number of privately owned sailing craft; Dry Dock Island, a
US navy dry dock facifity that is now obsolete, and a series of wharves along the northern
perimeter for the unloading of large container ships. Primary pollution sources in this area,
aside from the major shipping and harbor activities, included several fuel piers and fuel
storage depots (tank farms), electrical substations and transformers, and stormwater runoff
from wharves, piers and adjacent buildings.

Sites selected for biota analysis were Hotel Wharf, Shell Fox-1 Fuel Pier, the western end of
Commercial Port, Dry Dock Island, and Echo Wharf (Fig. 3). The Echo Wharf area was
selected as a control site based on low sedimentary levels of all contaminants examined
eartier. Sediments from the remaining sites were found to be moderately to highly enriched
with the following contaminants:

o Hotel Wharf (copper, lead, mercury, tin, zinc, PCBs, PAHs)

@ Shell Fox-1 Fuel Pier (copper, lead, mercury, zinc, PCBs, PAHs)
0 Western Commercial Port (copper, lead, mercury, zinc, PCBs)

o Dry Dock Island (copper, lead, mercury, zinc, PCBs, PAHs)

-7-
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1.3 Agat Marina:
Agat Marina is a relatively new, small boat harbor that has been in existence since 1990. It is

located approximately 8 km south of Apra Harbor in the semi rural setting of Agat village.
Permanent mooring sites are available for about 50 vessels. Although sediments from this
harbor were lightly contaminated with chromium, they were classified as clean for all other
contaminants examined (Denton et al. 1997). Potential sources of pollution in this area are
limited to contributions from watercraft, stormwater runoff from the adjacent car park area,
and a refueling pier at the southern entrance. There may also be some impact from the Agat
sewage treatment plant that discharges primary treated effluent nearshore, in about 2 m of
water, approximately 3 km to the north. Biota samples were collected from various points
throughout the harbor (Fig. 4)

1.4 Merizo Pier:

The Merizo Pier area is located within Guam’s largest barrier reef and is the southernmost
harbor facility on island. This small boat launch site has been in existence for about 35 years
and is a popular area for recreational boating and related water sports activities, It is also the
gateway to Cocos Island, a popular tourist spot located about 3 km off shore and accessed by
ferry. The Cocos Island ferry pier, more or less, marks the southern limit of the impacted
coastline, which extends northwest for about 200 m to a large public pier and popular fishing
spot. A deep-water navigation channel running parallel to the beach is situated about 25 m
offshore. The general layout of the area suggests that the waters are well mixed by the
prevailing winds, tides, and ocean currents.

Sediments from the deep-water channel were previously classified as clean for all
contaminants of interest (Denton e al. 1997). However, those collected in shallower waters
closer to shore, demonstrated moderate to heavy enrichment with copper, lead, tin and zinc,
especially in the vicinity of the Cocos Island Ferry terminal. PCB and PAH contamination of
these sediments, on the other hand, was generally light. Potential sources of pollution are
largely restricted to the ongoing boating activities, a couple of derelict and partially
submerged barges and a shoreline refueling station that services the Cocos Island ferries.
Biota samples were collected along the entire length of the impacted shoreline (Fig. 5)

» SAMPLE COLLECTION AND PREPARATION

A listing of all the organisms collected for analysis is shown in Table 1. While not
exhaustive, it includes representatives of several major phyla in addition to a number of
organisms of direct and potential economic importance. It also readily demonstrates the
species that are most widely distributed and, therefore, of the greatest use for future pollution
monitoring programs. We point out that not all species were available at all sites visited.

Biota samples were collected between June 3, 1998 and January 30, 1999, In most cases the
organisms were collected by scuba diver and were simply handpicked off the ocean floor,
coral reef, or side of a submerged structure. However, the bivalves did not readily facilitate
this method of collection and were usually removed from their point of attachment with the
aid of a hammer and chisel. Fish taken during the study were captured using spear gun and
hook and line,
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Table 1

Flora and Fauna Sampled During the Present Survey

Species Collected for Analysis

Agana Boat Basin
Apra Harbor (site 2)

Apra Harbor (site b)

Apra Harbor (site c)

Apra Harbor (site d)

Apra Harbor (site ¢)

Apra Harbor (site f)

Apra Harbor (site g)

Agat Marina

Merizo Pier

BROWN ALGA
Pading sp.

SPONGES
Callyspongiv diffisa
Cinachyra sp.

" Clathria vulpina ?
Dysidea sp.

Liosina cf. granularis
Siylotelln aurantivm
Yellow bread sponge
Yellow sponge (red outside}
Brown wartt sponge
Orange brown wart spenge

HARD CORALS

Acropora formosa
Fungia concinna
Fungla echidata
Herpolitha limax
Pocilopora damicornis

SOFT CORALS
Sinularia sp.

SEA CUCUMBERS
Bohadschia argus
Helothuria aira

BIVALVE MOLLUSKS

Chama lazanis

Chama brassica
Saceostrea cucevtlata
Spondylus 7 multimuricatus
Striosivea of. mytiloides

CEPHALOPOD MOLLUSK
Cetopus cyanea

STOMATOPOD CRUSTACEAN
Gonodactylus sp. (mantis shrimp)

TUNICATES
Ascidia sp.
Rhopalaea

-
-

wl
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Table 1 (cont.)

Flora and Fauna Sampled During the Present Survey

Species Collected for Analysis

Agana Boat Basin

g

arina

Apra Harbor (site a)
Apra Harbor (site b)
Apra Harbor (site d)
Apra Harbor (site ¢)
Apra Harbor (site f)

Apra Harbor (site ¢)
Apra Harbor (si
AgatM

r

.

Merizo

FISH

.

Acanthurus xanthopterus
Badlistoides viridescens
Boibometopon muricatum
Caranx ignobilis X
Caranx melampygus
Caranx sexfasciatits x
Cephalopholis sonnerati
Cheilinus chlorounus
Cheilinus fasciatus
Cheilinus trilobatus
Ctenochaetus binotatus
Clenochaetus siviatus
Epibulus insidiator
Epinephelus merra
Garres argyreus X
Gymnothorax javanicus
Letognathus equylus
Lethrinus rubrigperculatus
Lutfanus kasmira
Monodactylus argenteus x
Naso annulaiis

Naso unicornis

Odenus miger

Parupeneus barberimis
Parupeneus cyclostomus
Parupeneus multifasciatus
Saurida gracilis x
Saurida nebulosa
Scarus sordidus
Sigantis spinus x
Sufflamen chrysoplera

Valamugit engeli

Key to Apra Harbor Sites:
Apra Harbor (site a) = Western end of Hotel
Apra Harbar (site b) = Central Hotel Warf
Apra Harbor (site ¢) = Shell Fox-1 Fuel Pier

Warf

Apra Harbor (site d) = Northweslern end of Conunercial Port
Apra Harbor {site €) = Southem end of Dry Dock Island
Apra Harbor (site f) = Eastern end of Echo Warf

Apra Harbor (site g) = Off Port Authorily Beach

-14 -

e,

———— e



Upon coliection, all samples except the bivalves were immediately wrapped in aluminum foil
and placed on ice. The bivalves were held in seawater for approximately 6 h to allow them to
purge their gut contents. In the laboratory, all organism were thoroughly cleaned- of epiphytic
growth and/or adhering particulate material before subsampling for analysis. With algae, the
holdfasts and older, more encrusted portions of the plant were discarded and only the fronds
were taken for analysis. With the sponges, it was also necessary 1o carefully pare away
sediment laden portions of the exterior and interior surfaces prior to subsampling. The
sponges and ascidians were analyzed whole. Likewise, the entire soft parts of the bivalves
were taken for analysis. In contrast, specific tissues were removed from the sea cucumbers
(dorsal body wall and hemal system), octopus {tentacle and liver), mantis shrimp (tail muscle
and gonad) and fish (axial muscle and liver). With fish, muscle samples were taken
immediately below and parallel to the dorsal fin (left side of the body for heavy metals and
right side for PCBs and PAHs).

Samples for heavy metal analysis were stored in acid-cleaned, polypropylene vials while those
for PCB and PAH analyses were wrapped in aluminum foil and placed in precleaned glass
jars. All tissue samples were held at -20°C until required for analysis.

Samples for the analysis of all metals, except mercury, were performed on tissues dried to
constant weight, in an oven, at 60°C. Owing to the relatively high volatility of mercury,
analysis was conducted on wet rather than dry tissues.

Appropriate analytical methods for the above contaminants were adapted from the current
SW-846 protocols developed by U.S. EPA (USEPA 1995) for the physical and chemical
evaluation of solid waste, in addition to those recommended by the NOAA National Status
and Trends Program for Marine Environmental Quality (NOAA 1993a-d). Appropriate
quality control and quality assurance procedures including full procedural blanks, matrix
spikes, and certified reference materials were built into the analytical protocols.

3. HEAVY METAL ANALYSIS
All tissue samples were analyzed for heavy metals following conventional wet oxidation
procedures in hot mineral acids. The digestion procedures were essentially similar to EPA
method 3050A, SW-846 (USEPA 1995) with minor modifications as outlined below,

3.1 Mercury.
Approximately 1 g of wet tissue was accurately weighed into a 125 ml Erlenmeyer glass flask

and allowed to stand overnight in 10 ml of a 2:1 mixture of concentrated nitric and suifuric
acids. Several bivalve samples that were too big to analyze individually were split into two or
more portions and digested separately. The following day the cold digests were heated to
100°C in a boiling water bath for 3-hours. Each flask was loosely capped with a Teflon
stopper to facilitate good refluxing and exclude extraneous contaminants. After cooling, the
digests were made up to volume with deionized water (75-mi), and analyzed by flameless
atomic absorption spectroscopy (AAS) using the syringe technique described by Stainton
(1971). Calibration standards (5-20 ng/l) were made up in 10% nitric acid containing 0.05%
potassium dichromate as a preservative (Feldman 1974).

-15-




3.2 All Other Metals:

Between 1-3 g of dried tissue were accurately weighed into the digestion flasks described
above. Approximately 10 ml of concentrated nitric acid was added to each flask and they
were allowed to stand overnight. The following day the digests were heated to 100°C * 5°C
and allowed to reflux for 2-3 days. The solutions were then evaporated to dryness and further
additions of acid were made as necessary to completed digestion. Finally, digests were made
up to volume with 10% nitric acid (10 ml/g tissue weight) and analyzed by AAS within 5
working days. Blanks (two per batch of 40 digests) were treated similarly. Corrections for
non-atomic absorption were made simultaneously by the instryment.

Arsenic and tin were analyzed by cold vapor AAS using the hydride generation technique.
For arsenic, between 501,000 ul of sample were accurately dispensed into a polypropylene
reaction vessel containing 4 ml of 1.5% HCl. The total volume was adjusted to 5 ml with
10% nitric acid. Arsine gas was generated by reduction of the sample with 3% sodium
borohydride in 1% sodium hydroxide. All calibration standards (1-10 pg/) and sample
dilutions were made up in 10% nitric acid.

For tin, 1 ml of sample was added to 5 ml of saturated boric acid (50g/l). For smaller sample
volumes, adjustments to a 6-ml total volume were made using 10% nitric acid in order to
minimize changes in pH. Stannane gas was generated with 3% sodium borohydride in 0.5%
sodium hydroxide. Calibration standards (5-20 pg/l) were made up in saturated boric acid
solution on a daily basis. Levels of both metals in each sample were calculated by standard
addition to compensate for matrix interference.

All other metals were analyzed directly by conventional flame Atomic Absorption
Spectroscopy (AAS). All methods were validated using standard reference materials and or
spiked tissue composites as shown in Table 2.

4. PCB AND PAH ANALYSIS

All samples were analyzed for these contaminants with the exception of the hard corals. All
solvents used were pesticide grade and were checked for interfering contaminants following a
500-fold volume reduction before use (50 ml to 100 pl). Surrogates and internal standards
used to determine PCB recoveries were PCB 103 (100 pg/ul) and petachloronitrobenzene
(250 pg/ul) respectively. The equivalent compounds used for PAH analysis were deuterated
acenaphthene and benzofa]pyrene as the surrogates (50 ng/ul), and deuterated naphthalene as
the internal standard (50 ng/ul). The extraction and cleanup procedures outlined below were
customarily performed on sets of five wet tissue samples with an accompanying method
blank.

4.1 Solvent Extraction:

The samples were removed from the freezer and allowed to thaw. Using stainless steel
scissors and forceps, approximately 3 + 0.1 g of tissue sample were accurately weighed to the
nearest 0.01 g into a 50-ml Teflon centrifuge tube. All bivalve specimens were macerated and
thoroughly mixed in their glass storage jars beforehand using a Tekmar Tissumizer probe. A
sub-sample was then transferred into a centrifuge tube using a Teflon coated spatula.
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Following the addition of 10 g of anhydrous, granular sodium sulfate (heated to 600°C
overnight), 20 m! of methylene dichloride, and 100 pl of the PCB and PAH surrogates, each
tissue sample was homogenized using the Tissumizer (setting 50 for approximately two
minutes). After rinsing down the probe into the centrifuge tube with clean solvent, the extract
was centrifuged at 2000 rpm for 5 minutes before decanting into a Turbo-Vap™ evaporator
tube (Zymark). The extraction was repeated once more and added to the contents of the
evaporator tube. After volume reduction to approximately 0.5 mi, the extract was
quantitatively transferred to a 10-ml graduated, glass centrifuge tube with two 0.5-ml rinses of
methylene chloride. The tube was placed in a warm water bath and the extract volume
reduced to ~0.25 ml under a gentle stream of nitrogen. Solvent exchange into hexane (~1.0
ml) and further reduction in volume (~0.2 ml) was necessary before cleanup.

4.2 Silica/Alumina Column Cleanup:
Cleanup was accomplished with small columns of silica gel (grade 923, 100-200 mesh) and

neutral alumina (F-20, 80-200 mesh). Both adsorbents were activated and cleaned by heating
to 600°C overnight. The adsorbents were supported in glass, chromatographic columns, 280
mm in length and 7 mm internal diameter (i.d.). These were obtained commerciailly obtained
from Supelco. The upper 80-mm of each column was expanded to form a 50-ml solvent
reservoir. Just prior to use, the columns were plugged at their lower end with cotton wool,
rinsed with clean solvent and allowed to drain. Upon packing, each column was filled with
methylene chloride. The solvent was prevented from draining by a Teflon cap fitted over the
lower end of the column. Slurries of alumina (1 g) and silica gel (2 g) were sequentially
washed into the column reservoir with methylene chloride taking care to allow for the
displacement of trapped air bubbles. After settling (facilitated by gently tapping the column),
the individual alumina and silica gel portions of the column were approximately 3.2 cm and 9
c¢m in length respectively. Packed columns were washed with a further 20-ml of methylene
chloride followed by 2 x 20-ml volumes of pentane in final preparation. The laboratory
temperature was kept lower than 27°C at all times to avoid vapor pockets from forming in the
columns.

The concentrated tissue extract was transferred to the cleanup column afier draining the
pentane wash to the packing top. Two rinses of ~0.25 ml! of hexane were used to complete the
transfer. The column was eluted with 5 mi of pentane (discarded) followed by 10 mi of 50%
methylene chloride in pentane. The latter fraction containing the PCBs and PAHs was
collected in a 10-ml graduated, glass centrifuge tube, evaporated to 5 ml and split into two
2.5-ml fractions. The first fraction was solvent exchanged with hexane for PCB analysis
while the second fraction was solvent exchanged with acetonitrile for PAH determination.
Both fractions were reduced to a final volume of 0.1 ml before transfer to clean, glass auto-
sampler vials with small volume inserts (250 pl). Finally, 10 pl of the appropriate internal
standard was added to each vial before chromatographic analysis.

4.3 Chromsatographic Parameters for PCB Analysis:
PCB analysis was carried out by Gas Chromatography (Varian 3400CX) using an electron

capture detector and a 60 m x 0.25 mm id. fused silica MDN-58, polymethyl-5% phenyl-
siloxane (0.25um film thickness) capillary column (Supelco). Gas flows (nitrogen), through
the column and the detector, were 1 ml/min and 30 ml/min respectively. The initial column
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temperature was maintained at 50°C for the first minute of each run. It was then ramped to
150°C at 30°C/min, then to 280°C at 25°C/min, where it was held for 20 min to give a total
run time of 76 min. Both the injector and detector temperatures were held constant at 280°C
and 310°C respectively.

PCB quantification was accomplished using a 20-congener calibration standard representing
PCB homologues Cl; to Clip (NOAA 1993a). The congeners, listed in Table 3, were selected
on the basis of their potential toxicity, bicaccumulation and/or frequency of occurrence in
environmental samples. Complete chromatographic separation of all congeners was achieved
aithough several of them are known to co-elute with other PCB congeners present in
commercial PCB mixtures (Table 3).

PCB homologue concentrations were estimated from the data by summing values obtained for
congeners of similar chlorine content. The “total” PCB content of the sample was calculated
from the sum of the individual congener data (220PCB). PCB congener recoveries from the
certified standard reference material (SRM 1974) and a spiked oyster composite were
generally within acceptable limits (Table 2). Method detection limits for individual
chlorobiphenyls in the standard mix ranged from 0.02-0.15 ng/g.

4.4 Chromatographic Pavameters for PAH Analysis:
PAH analysis was achieved by High Performance Liquid Chromatography (HPLC) using a

fluorescence/UV (diode array) detector system and a 10 em x 4.6 cm i.d., stainless steel, LC-
PAH column (Supelco) containing a porous silica stationary phase (3 pm particle size).
Following sample injection, isocratic elution with acetonitrile/water (4:6, v/v) occurred for the
first 0.3 min, followed by a linear gradient to 100% acetonitrile over the next 10 min. Elution
with 100% acetonitrile continued for a further 5 min before the run was terminated. The
solvent flow rate through the column was held constant at 2 ml/min.

Quantification with the more sensitive fluorescence detector was achieved with excitation at
280 nm and emission at 380 nm. The diode array provided a synchronous absorption scan
from 190-357 nm, with a wavelength difference of 4 nm, and was used primarily for
confirmatory analysis at the higher levels of detection.

The calibration standards were made up containing the 16 PAHs recommended as priority
pollutants by the Wold Health Organization (WHO), the European Economic Comimunity
(EEC) and the U.S. EPA. These priority pollutants are all parental compounds (ie., they
contain no alky! substituents) and are major constituents of pyrolytic sources of PAHs. They
are listed in Table 4 together with their molecular weights and structural identities. Method
detection limits with the fluorescence detector were as follows: naphthalene (34 ng/g),
acenaphthene (4 ng/g), fluorene (8 ng/g), phenanthrene (3 ng/g), anthracene (2 ng/g),
fluoranthene (5 ng/g), pyrene (3 ng/g), benzo{ajanthracene (1 ng/g), chrysene (1 ng/g),
benzo(b)fluoranthene (5 ng/g), benzo(k)fluoranthene (4 ng/g), benzo(a)pyrene (3 ng/g),
dibenzo(a, ) anthracene (8 ng/g), and benzo(g, 4, i)perylene (13 ng/g). Detection limits for the
non-fluorescing PAHs, acenaphthylene and indenol(/,2, 3-cd)pyrene, were 3 ng/g and 6 ng/g
respectively, using the UV diode array detector,
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Table 3

PCB Congeners in Calibration Standard used to Quantify PCB Homologues in
Biota Samples from Harbor Sites on Guam

PCB Congeners in Calibration Standard Co-eluting PCB Congeners
IUPAC! Chlorine Structural TUPAC Chlorine Structural
Number Atoms/mol. Arrangement Number Atoms/mol. Arrangement ]
3' (AL22L/124D) 2 2,4’ 5: 2 2’3
18t (aotsne 3 225 15* (AL221A1247) 2 . A4
agd (MOl 3 244 3 A 3 24,5
44 QAEY 4 2235 none
spb iy 4 2255 43 4 2,2°.3,5
66" MY 4 2344 80" 4 3,3°,5,5°
95 5 2,2'3,5'.6
77 4 3,3",4,4° 154° 6 2,2°,4,4°5,6
101° A 5 2.2 4,5,5 7 4 3345 .
105* 5 2,3,3",4,4' none
g @S 5 234,45 106" 5 2,3345
126 5 3,3°,4,4,5 129 6 223345
128 6 2,233 4.4 none \
13g% (2260 6 22’3445 158°* 6 233446 i
1530 (Ausnae 6 2,2,4,4,5,5° none
170b 1260 7 2,2’3,3,4.4°,5 none
1800 1260 7 2.2’ 3,44,5,5° none
187 7 2,2°3,4,5.5'.6 159° 6 233,455
182° 7 2,2 3,44,5,6°
195* E; 2233 44,56 none
206 9 2,2°,3,3,4,4',5,5° 6 none
209° 10 223,344 ,5,5,6,6° none

* ot commion (< 10% cccumence) jn environmenta] semples (from McFarland and Clarke 1989).

® riajor component of environmentsl mixtures (from NOAA 1993a); © highly toxic planar PCB. ! Iternational Union of Pwe & Applied Chomistry,

Labels in parentheses indicate dominant componeats (> 2% by wt.) of the sl PCB mixtures: Aroclors 1016, 1221, 1242, 1254 & 1260 (from De Voogt et al 1990)
Compilation of chromatographis data from Ballschmiter and Zsll {1980); Holden {1986); Bellschmiter et al. (1987); De Voogt et ai. (1990); Rebbert et al. (1992);

Wise et al. (1993); Schantz et al. (1993); Bright et al. (1993}, using 60 m DI-5 (or equivaleat) high resolution GC colnmas,

N




Table 4

Unsubstituted PAHs in Calibration Standard used to Quantify PAH
Levels in Biota Samples from Harbor Sites on Guam

IUPAC' Nomenclature Molecular Wt. Structural Identity
Naphthalene | 128.19 o
Acenaphthylene 15221 @‘@
Acenaphthene 154.21 : @'@ |
Fluorene - 166.23 - OO
Phenanthrene 178.24 @©@
Anthracene 178.24 | @@
Fluoranthene 202.26 _ u
Pyrene* 202.26 o | | ©©
Benzo(a)anthracene* 228.30 @@@ -
Chrysene* 228.30 ' '
Benzo(b)fluoranthene* 25232 o o
Benzo(k)fluoranthene* 252.32 OO 10
Benzo(a)pyrene* 252.32 @@@
Benzo(ghi)perylene 276.34 0L o 1
Indeno(1,2,3-cd)pyrene* 276.34 OO0 e
Dibenzo(a,h)anthracene* 278.36 ©©

! International Union of Pure and Applied Chemistry; * = known catcinogen
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All calculations were based on peak area comparisons of components sharing identical
retention times in both sample and standard. From these data, the “total” PAH (Z16PAH)
content of the sample was calculated. PAH recoveries from spiked oyster tissue composites
were disappointingly low (Table 2) reflecting perhaps the inadequacies of the cleanup

procedure. Nevertheless, they were considered sufficient for the preliminary screening
purposes of this project.

5. PRESENTATION OF DATA

All the chemical data accumulated hitherto has been tabulated separately for each contaminant
group and is presented in ascending order of organism complexity starting with algae and
culminating with fish. It is organized in a way that facilitates quick reference to the
concentration and distribution of contaminant levels between sites for any particular species.
No adjustments have been made for percentage recoveries from tissue spikes and standard
reference materials.

Notes on the significance of the findings precede the tabulated data for each contaminant
group. Levels normally encountered in seawater and sediments from clean and contaminated
areas are included to facilitate a better understanding of environmental distribution patterns.
Comparisons are also made with levels reported in the literature for marine organisms from
elsewhere with emphasis, where possible, on those from tropical waters. A selection of
published data has been tabulated for easy reference and appears in Tables 5-7 at the end of
the current section.  From such comparisons, a preliminary appraisal of the degree of
contamination, exhibited by biotic resources from within Guam harbors, has been made.

A detailed comparative analysis of sedimentary concentrations with data from other parts of

the world, together with likely contaminant sources and suggested sediment quality guidelines
for Guam, are presented in a companion report prepared earlier (Denton ef al. 1997).
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RESULTS & DISCUSSION

1, HEAVY METALS IN HARBOR BIOTA

The heavy metal data obtained during the present study are summarized in Tables 8-15 at the
end of this section, The following text is organized on a metal by metal basis and the data are
discussed with reference to levels found by other workers in similar and related species from
elsewhere in the world. The bioindicator potential of each group of organisms is also
discussed where appropriate. All referenced data are expressed on a dry weight basis unless
stated otherwise. The Guam data can be conveniently expressed on a wet weight basis if so
desired using the water content data recorded in each table.

1.1 Silver (Ag):

Silver ranks among the most toxic of heavy metals to marine organisms (Moore 1991),
Levels in abiotic components of the marine environment are usually low. Dissolved levels in
seawater are generally less than 0.001 pg/l (Shafer 1995) while levels in uncontaminated
sediments are in the order of 0.1 ng/g (Bryan and Langston 1992). Sedimentary silver
concentrations in highly polluted environments can exceed 100 pg/g (Skei ef al. 1972).
Levels previously reported by us for Guam harbor sediments were consisiently below an
analytical detection limit of ~0.2 pg/g indicating that silver is not an element of environmental

concern locally (Denton ef al. 1997). Levels found in biota during the present investigation
are discussed below.

1.1.1 Agin Algae:

In the present study, silver levels in the brown alga, Padina sp., were below the limits of
analytical detection except at Agana Boat Basin where the pooled tissue composite yielded a
value of 0.89 ug/g (Table 8). Burdon-Jones ef al. (1982) reported silver concentrations of
<0.1-0.4 pg/g for this genus taken from Townsville Harbor, Australia (Table 5). Levels
recorded in other phacophyceae generally do not exceed 0.4 ug/g (Preston ef 4. 1972, Bryan
and Uysal 1978, Burdon-Jones et al. 1975) although Bryan and Hummerstone (1977) gave a

maximum value of 2.42 pg/g for Fucus spp. collected from the metal enriched Looe estuary in
Cornwall, UK.

1.1.2_Ag in Sponges:

Silver levels found in sponges during the current study were low and ranged from <0.11-0.47
ng/s. The highest concentrations occurred in specimens from Apra Harbor and Agana Boat
Basin (Table 9). We were unable to locate any comparative silver data for sponges from
elsewhere,

113 Agin Corals:

Silver does not concentrate up the food chain and so residues are typically low in invertebrates
from most surface waters (Moore 1991). Reported levels for soft and hard corals rarely
exceed 0.1 pg/g (Veek and Turekian 1968, Riley and Segar 1970, Burdon-Jones and Klumpp
1979). The relatively high level of 2.7 pg/g recorded in Sinularia sp. from the Agana Boat
Basin during the present study (Table 10) is of interest because it supports the mild
enrichment demonstrated by Padina sp. collected from this area.
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1.1.4 Agin Sea Cucumbers:

Silver levels in almost all species of echinoderms examined by others are either low, non-
detectable, or near the limits of analytical detection (Eisler 1981). The results of the present
study are in line with these findings apart from one relatively high value of 4.9 pg/g
determined in the hemal system of a specimen of Holothuria atra from the Port Authority
Beach area in Apra Harbor (Table 11). Papadopoulu ef al. (1976) reported whole body silver
concentrations of 0.05 pg/g for the sea cucumber, Holothuria tubulosa.

115 Agin Mollusks:
Mollusks show considerable inter- and intra-specific variations in silver concentrations. In

most cases, the highest reported levels coincide with samples taken from polluted
environments (Alexander and Young 1976, Fowler and Oregioni 1976, Greig 1979). Qysters
appear to have a greater affinity for this element than either mussels or scallops (Brooks and
Rumsby 1965). Levels reported for this group commonly fall between 0.1 and 10 pg/g
(Thurberg ef al. 1974 Watling 1976, Goldberg et al. 1978, Greig and Wenzloff 1978) as seen
during the present study (Table 12). However, Windom and Smith (1972) found high levels
ranging from 28.0-82.0 ng/g in oysters from the Georgia coast, USA.

Comparative data for silver in the other bivaive species coflected during the present study is
almost nonexistent (Table 13). Burdon-Jones and Klumpp reported 0.6-11.8 pg/g for Chamna
iostoma from Townsville coastal waters, Australia, and is somewhat higher than reported here
for C. brassica. These authors also looked at silver in the separated tissues of Spondylus
ducalis and found maximum levels of 11.3 and 13.7 ug/g in the digestive gland and kidney
respectively. Levels in both tissues seemed to decrease with increased distance offshore, a
trend presumably related to the proximity of contamination sources.

While the digestive gland and kidney are the sites of silver deposition in bivaive mollusks, it
is the liver that usually accumulates the highest concentration of this element in cephalopod
moliusks. This was evident for octopus collected from Apra Harbor during the current study
(Table 14) and has previously been demonstrated with squid (Denton, unpublished data).
Interestingly, the highest recorded silver levels in squid liver are 25.0 pg/g and 45 pg/g found
in Loligo opalescens from the central and southern California coasts respectively (Martin and
Flagal 1975).

1.1.6 Agin Crastaceans:
Crustaceans generally contain low tissue levels of silver ranging from 0.5 pg/g or less, in

muscle and gonad, to 1-10 pg/g in the hepatopancrease (Bertine and Goldberg 1972, Greig ef
al. 1977, Hall et al. 1978). Thus, levels found in mantis shrimp tissues during the present
study were not considered unusual (Table 14).

L1.7 Ag in Ascidians:

Few studies have focused on heavy metal in tunicates. Papadopoulu and Kanias (1977)
looked at silver in whole Ciona intestinalis and Microcosmus sulcatus and found very low
levels of 0.021 and 0.031 pg/g respectively. Tunicates from Apra Harbor generally showed
similarly low levels of this element in their tissues (Tabie 14).
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118 Agin Fish:

In contrast to the situation with tunicates, there is a wealth of data describing heavy metal
levels in fish. Public health interests in species commonly consumed by man have largely
driven this research. According to Eisler (1991), biomagnification of silver rarely occurs in
fish, even under the most polluted conditions. Consequently, silver levels in fish muscle
never exceed 0.2 pg/g wet weight and are almost always <0.1 pg/g wet weight. The findings
of the present study confirm this statement (Table 15). Like most other metals, silver tends to
be more concentrated in the liver of fish although levels rarely exceed 1 ng/g wet weight.
During the present work, higher levels were found in less than 3% of liver samples analyzed.

1.1.9 Concluding Remarks:

Clearly, none of the organisms examined were excessively enriched in silver, confirming
earlier conclusions regarding this element’s low-level abundance in our . local harbor
environments (Denton et al. 1997).

1.2 Arsenic (As):

Although arsenic has several oxidation states, the chemical form normally encountered in the
environment is not particularly toxic to aquatic organisms (Moore 1991). Soluble arsenic
tevels in seawater are normally around 2-4 pg/l (Riley and Chester 1971, Bowen 1979) while
levels in uncontaminated sediments are in the order of 5 pg/g (Bryan and Langston 1992).
Levels previously reported by us for local harbor sediments ranged from <1.0-17.0 pg/g with
the highest levels occurring in samples from Hotel Wharf in Apra Harbor. Values of 1-3 ng/g
were considered to be fairly typical of clean carbonate sediments on Guam (Denton ef al.
1997). In highly contaminated environments, arsenic levels in sediments can exceed 1,000
pg/g (Langston 1984, 1985).

1.2.1 As in Algae:

Appreciable amounts of arsenic are present in most marine species and most of this is in the
organic form. In algae for example, lipid soluble dimethyl arsenate usually accounts for well
aver 90% of the total arsenic present (Kiumpp and Peterson 1979). It should be emphasized
that most of the organic arsenic in algae is the result of metabolic transformations within the
plants themselves and not direct uptake from water (Moore 1991). Average arsenic levels in
algae (all types) are around 20 pg/g according to Bryan (1976) with normal ranges between 2

and 60 pg/g (Eisler 1981). Levels determined in Padina sp. during the present study fell
within these limits (Table 8).

1.2.2 As in Sponges:

Data on arsenic levels in sponges are limited. Leatherland and Burton (1974) recorded 2.8
ug/g in the bread sponge, Halichondrea panicea, from Southampton waters in the UK. In our
study, we determined relatively high levels of arsenic (5.96-47 7 ug/e) in the majority of
sponges collected from Apra Harbor. In contrast, levels were either at or below detection in
specimens taken from all other harbor sites (Table 9).
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1.2.3 As in Corals: _
Corals from Apra Harbor generally contained the highest arsenic concentrations determined

during the present investigation (Table 10). However, levels were generally lower than found
in algae and sponges, with the notable exception of Pocilopora damicornis from beneath the
Shell Fox-1 Fuel Pier (site ¢). The arsenic level measured in this particular specimen was
67.1 ng/g. We were unable to locate any previous studies of arsenic abundance in corals
although some data exists for other coelenterates. For example, Leatherland and Burton found
72.0 ug/g in the sea anemone, Telia felina, from the Solent estuary, a major shipping highway
in the south of England. In his review paper, Bryan (1976) estimates average arsenic levels
for coelenterates to be around 20 ug/g.

1. 2.4 _As in Sea Cucumbers:

The echinoderms are another group that has received little attention in terms of their trace
metal content. Bryan (1976) reports an average arsenic value of 5 pg/g for the group as a
whole, but draws attention to the fact that his estimate is derived from very few data. Based
on our findings for Guam harbors, it would seem that arsenic levels are appreciably lower
than this, at least in sea cucumbers. For example, both Holothuria atra and Bohadschia argus
from Agana Boat Basin, Agat Marina and Merizo Pier contained less than 0.01 pg/g in their
body wall muscle (Tablel11). Levels were slightly higher in the hemal system but did not
exceed 0.2 pg/g in any of the samples analyzed. Levels in both tissues were considerably
higher in all specimens collected from within Apra Harbor. These findings once again point
towards the increased biological availability of arsenic in this area.

1.2.5 As in Mollusks:

Mollusks are known to be unusually rich in arsenic compounds. For example, the whole soft
parts of the file shell, Pinna nobilis, from the Mediterranean were reported to contain up to
670 ug/g (Papadopoulou 1973). Closer to home, the chamid, Chama plinthota, from the
Torres Strait was found to contain 2 maximum of 1400 pg/g (Dight and Gladstone 1993).
Fortunately, such compounds consist primarily of organic pentavalent species, non-toxic
forms with little implications from a human health perspective. Most other bivalves generally
contain much lower arsenic levels than the two examples cited above. Oysters, for example,
normally contain around 10 pg/g (Forstner 1980) although the natural range can extend from
1-15 pg/g (Bisler 1981). Arsenic levels measured in oysters during the present study
frequently exceeded 20 pg/g and peaked at 38.4 ng/g in one specimen from Agat Marina
(Table 12). Oysters from Apra Harbor generally contained the lowest concentrations of
arsenic in contrast to the other animal groups described above. The utility of bivalves as
indicators of arsenic pollution has yet to be unequivocaily established.

The bivalve kidney is the primary deposition site for arsenic, In most bivalves these paired
organs are anatomically inconspicuous but in spondylids and chamids they are enlarged. This
could account for the relatively high arsenic levels observed in representatives from both
groups analyzed during the present study (Table 13). The tridacnid clams are another group
with enlarged kidneys. In fact, the kidneys of these bivalves account for up to 10% of the
total flesh wet weight (Reid et al. 1984). Interestingly, one representative of this group,
Tridacna maxima, was found to contain renal arsenic levels in excess of 1,000 pg/g (Benson

1983).
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Cephalopod mollusks show a similar affinity for arsenic as their bivalve relatives, and
according to Bryan (1976), contain average concentrations of around 40 ug/g. The relatively
high arsenic levels, determined in the liver (44.3 ug/g) and tentacles (96 pg/g) of the octopus
captured in Apra Harbor during the present study are, therefore, unremarkable (Table 14). For
comparative purpose, we note here that Leatherland and Burton (1974) reported arsenic levels
of 73 pg/g in the mantle of the cuttlefish, Sepia officianalis, from north temperate waters.

1.2.6_As in Crustaceans:
‘Arsenic concentrations in decapod crustaceans range from 1-100 pg/g (Fowler and Unlu
1978) although average concentrations for the group are around 30 pg/g (Bryan 1976). Levels

determined in the stomatopod from Apra Harbor tended towards the lower end of this range
(Table 14).

1.2.7 As in Ascidians:

Tumicates are not exceptional accumulators of arsenic and average levels for the group, based
on limited data, are in the order of 5 ug/g (Bryan 1976). Levels determined in two genera of
ascidians from Apra Harbor during the present study ranged from 2.31-3.92 ug/g (Table 14).
Whether these values are influenced by the mild enrichment of biologically available arsenic
in this area remains to be determined.

1.2.8 Asin Fish:

Arsenic concentrations in edible fish tissues are generally lower than those reported for edible
portions of algae, crustaceans, and bivalve mollusks (Lunde 1977). Eisler (1971) conducted
an extensive Teview of arsenic in fish tissue and concluded that while levels in muscle and
fiver tissues varied widely, most fell between 2.0 and 5.0 pg/g wet weight. The results of our
study confirm this (Table 15). However, Eisler also noted that hepatic arsenic levels were
usually higher than those found in muscle tissue, which is contrary to what we observed.

There is some evidence that fish are useful indicators of arsenic contamination. For example,
Grimanis ef al. (1978) found maximum levels of 18.0 and 142 pg/g in the flesh of Gobius
niger from non-polluted and poliuted areas of the Aegean Sea respectively, Likewise,
Papadopoulu ef al. (1973) recorded average concentrations of 18,0 and 39.0 ug/g in the flesh
of Pagellus erythrinus from clean and contaminated areas of the Mediterranean.

1.2.9 Concluding Remarks:

The data generally point toward mild enrichment of biologically available forms of arsenic in
the outer Apra Harbor area. Discrepancies between the various groups in this regard
presumably reflect inter-specific differences in affinity and metabolic control over this
element, in addition to variations in uptake from different fractions of the total available load
(i.e., soluble, particulate, food-associated, or sediment-bound arsenic).

1.3 Cadmium (Cd):

Cadmium, particularly as the free cadmium ion, is highly toxic to most plant and animal
species (Moore 1991). Cadmium concentrations in remote open ocean waters may be as low
as 0.002 pg/l and rarely exceeds 0.5 pg/l in nearshore waters, even in heavily industrialized
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areas (Yeates and Bewers 1987). Non-poliuted sediments normally contain 0.2 pg/g or less
but levels may exceed 100 pg/g at heavily contaminated sites (Naidu and Morrison 1994),
Previously reported cadmium concentrations in Guam harbor sediments ranged from less than
0.1ug/g, in the great majority of samples analyzed, to 2.18 pg/g at Hotel Wharf in Apra
Harbor. It should be mentioned, however, that two other surface sediment samples taken from
Hotel Wharf at the same time yielded values of 0.27 and 0.35 ug/g indicating cadmium
enrichment heterogeneity in this area.

1.3.1 (din Algae:

The ability of algae to accumulate cadmiym from seawater is well documented and levels as
high as 220 ng/g have been recorded in brown algae (Fucus vesiculosus) from the metal
enriched Severn Estuary in the UK (Butterworth et af 1972). Levels recorded in Padina sp.
during the present study ranged from <0.1 pg/g, in samples from Agat Marina and Merizo
Pier area, to 0.5 pg/g in algae from Apra Harbor (Table 8). These values compare well with
levels found in related species from Singapore coastal waters (Bok and Keong 1976) and the
Australian Great Barrier Reef (Denton and Burdon-Jones 1986a). However, they are a little
lower than those found in Padina sp. from elsewhere (Table 5). For example, Burdon-Jones
et al. (1982) determined a maximum mean value of 1.4 pg/g in Padina tenuis from the coastal
waters off Townsville, Australia, while Sivalingam (1978) reported a high of 7.1 ng/g for the
same species from Penang, Malaysia.

While algae are generally considered to be useful biological indicators of dissolved cadmium,
the presence of elevated levels of iron and/or manganese in the water can significantly reduce
cadmium uptake (Moore 1991). This is thought to occur as a result of competition between
the metals for cellular binding sites.  Since harbors are typically enriched with both metals,
some caution is required in interpreting cadmium contamination profiles in such areas from
the analysis of algae alone. The work of Burdon-Jones ef al. (1982) clearly demonstrated this
problem. These researchers collected Padina tetrostromatica from Townsville Harbor, an
area enriched with all three metals. Cadmium levels in algae, collected monthly for one year
from this location, ranged from 0.2-0.6 pg/g compared with 0.2-1.2 pg/g at a control site.

1.3.2 Cdin Sponges:

Low levels of cadmium were found in all sponge samples collected during the present study.
Values ranged from 0.11-0.86 pg/g with no obvious inter-site differences. Comparable data
are rare and confined here to reports by Leatherland and Burton (1974), who found 0.85 ng/g
in the bread sponge, Halichondria panicea, and Bernhard and Zattera (1975), who reported a
range of 1.2-4.5 pg/g for several species of porifera from Puerte Rico.

L3.3 Cdin Corals:

Cadmium concentrations in representative species of coelenterates, reviewed by Eisler (1971),
ranged from 0.07-5.3 pg/g in whole organisms. A more recent survey of hard and soft corals,
from unpolluted waters of the Great Barrier Reef, revealed levels of 0.02-0.2 ug/g and 0.1-9.7
ug/g in representatives of each group respectively (Burdon-Jones and Klumpp 1979, Burdon-
Jones and Denton 1984a, Denton and Burdon Jones 1986b). These values encompass the
range of cadmium concentrations determined in hard and soft corals during the present study.
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1.3.4 Cd in Sea Cucumbers:

Echinoderms generally seem to contain cadmium levels of less than 1.0 pg/g. However, there
are exceptions. For example, Riley and Segar (1970) found 4.5-5.3 pg/g in the starfish,
Solaster papposus, from UK coastal waters, whilst Noddack and Noddack (1939) reported a
high of 2.6 pg/g in the sea cucumber, Stichopus tremulus, from an unspecified location.
Thompson and Paton (1978) determined a slightly lower maximum of 1.7 ng/g in body wail
muscle of the sea cucumber, Molpadia intermediai, from a sediment disposal site in the
Georgia Strait, Vancouver. In contrast, Burdon-Jones and Denton (1984a) failed to find
cadmium above a detection limit of ~0.1 pg/g in the same tissue of Stichopus variagatus from
unpolluted sections of the Great Barrier Reef These studies strongly suggest that sea
cucumbers have some bioindicator capacity for cadmium. If such is the case, the findings of
the current study (Table 11) infer that none of the harbor sites visited were appreciably
enriched with this element.

1.3.5_Cd in Mollusks:

Bivalve mollusks have been widely used to monitor cadmium pollution in aquatic
environments. The fact that they are sessile and have a high affinity for cadmium, and several
other metals of environmental concern, make them ideal candidates for coastal monitoring
purposes, However, this latter quality also places severe constraints on their usefulness as a
food resource when harvested from heavy metal contaminated waters.

There is considerable data for cadmium and other heavy metals in oysters. In clean
environments, cadmium levels in the whole soft parts of oysters usually lie somewhere
between 1.0 and 10 pg/g (Table 5). In grossly contaminated environments they are very much
higher. For example, Talbot ef al. (1976) reported a high of 174 ug/g in the flesh of Ostrea
angasi taken from the polluted Port Phillip Bay area in Australia. Similarly, Ratkosky ef al.
(1974) found 30.7 pg/g wet weight in Crassostrea gigas taken close to a zinc refinery in
Tasmanian waters. This translates to ~150 pg/g when recalculated on a dry weight basis.
Levels encountered during the current study ranged from 0.2-1.0 pg/g and are among the
lowest ever recorded for this group (Table 12). '

Not much in the way of comparable data exists for the other bivalves analyzed during the
present investigation. What little data there is has been incorporated into Table 5 and largely
reflects the extensive work of Burdon-Jones and coworkers. Suffice to say cadmium levels in
chamids and spondylids from Guam harbors are appreciable lower than those found in related
species from the Great Barrier Reef and the Torres Strait.

Cephalopod mollusks tend to accumulate naturally high concentrations of cadmium and other
trace elements in their livers (Table 5). In contrast, levels found in edible tissues are usually
very much lower. There is no evidence from the literature to suggest that these organisms
have any usefulness as bioindicators of heavy metal poliution.

1.3.6_Cd in Crustaceans:

Crustaceans naturally contain reasonably high levels of cadmium in their digestive gland
(hepatopancreas) and occasionally in their gills and gonads (Burdon-Jones e al.1975). Levels
in muscle, while generally lower, often vary between 1-10 ng/g. However, the great majority
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of values reported in the literature are less than 1 pg/g (Eisler 1981) as was noted in the
present study with mantis shrimp (Table 14). There is some evidence to suggest that levels of
cadmium in crustacean tissues are influenced by, and therefore reflective of, environmental
levels (White and Rainbow 1982, Rainbow and White 1989).

1.3.7 Cdin Ascidians:

The little work that has focused on cadmjum in tunicates, including the results of the present
study, indicates that levels normally encountered in this group range between 0.1-3.0 ug's
(Leatherland et al. 1973, Eustace 1974, Letherland and Burton 1974). It is noteworthy that
cadmium levels in all ascidians from Guam are at the lower end of this range (Table 14).

1.3.8 Cdin Fish:

Cadmium levels in fish muscle are generaily less than 0.1 pg/g although there are occasional
reports of levels 1 to 2 orders of magnitude higher in fish from contaminated areas {Forster et
al. 1972, Halcrow ef al. 1973, Sims and Presley 1976, Bohn and Fallis 1978). Levels
determined in fish muscle during the present study were either undetectable or below 0.1 pg/sg
(Table 15). Denton and Burdon-Jones (1986c) reported similarly low values in muscle of 50
species of Australian fish from remote areas of the Great Barrier Reef. These authors also
noted that cadmium was usually more concentrated in the livers of fish examined. In fact,
levels often exceeded 20 pg/g and occasionally topped 100 pg/g in this tissue. They
concluded that dietary difference between and within species were responsible for the highly
variable hepatic cadmium levels encountered.  Interestingly, hepatic cadmium levels
determined in fish during our study were considerably lower and ranged from 0.2-4.8 pg/g.

1.3.9 Concluding Remarks:

Based on the foregoing data and discussions, it seems reasonable to assume that cadmium
does not pose a threat to the health of ecosystems, or integrity of potential food resources,
within any of the harbor environments examined,

1.4 Chromiuvm (Cr):

Chromium is only moderately toxic to aquatic organisms (Moore 1991). Total dissolved
chromium levels in seawater show little variability and range from around 0.6 pg/l in offshore
areas to 1-2 pg/l in highly polluted areas (Riley and Chester 1971, Beukema ef al. 1986).
Nakayama ef al. (1981) showed that dissolve chromium in the Pacific Ocean and Sea of Japan
existed as 10-20% inorganic-Cr’*, 25-40% inorganic-Cr®", and 45-65% organic-Cr. Levels in
particulate form were also found to outweigh dissolved concentrations by a factor of 6 and
5.25 in each location respectively. From this we infer that sedimentary chromium levels
rapidly accumulate in waters receiving elevated concentrations of this metal.

Chromium levels in uncontaminated sediments vary according to their mineralogical
characteristics and range between 10-100 pg/g (Turekian and Wedepole 1961). Calcareous
sediments of biogenic origin, like those found on Guam, are typically lower and normally
contain 3-5 pg/g. In severely contaminated areas, sedimentary chromium concentrations have
exceeded 2,000 pg/g (Young and Means 1987). Chromium levels previously determined by
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us in Guam harbor sediments ranged from 3.09-52.7 pg/g, and were indicative of fairly clean
conditions overall with light to moderate enrichment in places (Denton et al. 1997).

1.4.1 Crin Algae: _

Surprisingly, the Merizo Pier area in the vicinity of the Cocos Island ferry terminal contained
the highest levels of sedimentary chromium level given above. This moderate enrichment
was also reflected in algae from this site with 14 ug/g being recorded in Padina sp. during the
present study (Table 8). At the other harbor sites, levels ranged from 0.57-2.98 pg/g.

Burdon-Jones et al. (1975, 1982) reported chromium levels of 1.4-10 pg/g in Padina sp. from
relatively clean coastal waters near Townsville, Australia, and a high of 31.5 pg/g in samples
from the polluted upper reaches of Townsville Harbor. These values pale in comparison to
the high of 140 pg/g recorded by Gryzhankova et al. (1973) for 19 species of algae from
polluted Japanese coastal waters.

1.4.2 Cr in Sponges:

Chromium levels found in sponges from Guam harbors were not excessively high and ranged
from 0.45-24.9 ug/g (Table 9). No enrichment was apparent in the Merizo Pier area. In fact,
inter-specific differences in chromium levels outweighed any obvious inter-site differences.
No comparative data were found in the literature to effectively evaluate levels of this element
in local sponges.

1.4.3 Cr in Corals:
Coelenterates are another little worked group in terms of their elemental composition. This is

especially true for chromium. One reference to a cold water soft coral species (Alcyonium
digitatum) recorded a chromium fevel of <0.4 pg/g (Riley and Segar 1970). Similarly low
values of <0.15-0.31 pg/g were found in the soft coral, Sinularia sp. during the present study
(Table 10).

Comparative data for chromium in hard corals is confined here to the work of Livingston and
Thompson (1971). These authors measured several trace elements in 34 species of coral from
the Caribbean. Deep-water species contained chromium levels ranging from 0.8-3.0 ng/g,
whereas shallow water species, taken from chromium-rich, mineral areas, contained up to 335
ug/g. Levels determined in hard corals during the present study were 0.3 pg/g, or less, clearly
an indication of a low ambient availability of this element in the surrounding waters.

1.4.4 Cr_in Sea Cucumbers:
Chromium in sea cucumbers collected during the current investigation was largely confined to

the hemal system, Levels in this tissue ranged from 6.27-31.9 pg/g in Bohadschia argus, and
0.88-8.58 pg/g in Holothuria atra (Table 11). Chromium concentrations in the muscle tissue
of both species were mostly below a detection limit of ~0.2 pg/g. Fukai (1965) recorded a
similar value of 0.28 pg/g in muscle tissue of the sea cucumber, Holothuria forksalli. In
contrast, Thompson and Paton (1978) noted a relatively high chromium concentration of 2.2
ng/g in the body wall of Molpadia intermedia, collected from a sediment disposal site in
Georgia Strait. These data imply that sea cucumbers are effective bioindicators of chromium
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contamination, and that Guam harbor sediments are comparatively free of pollution by this
element,

1.4.5 Cr in Mollusks:

Chromium levels in the edible tissues of uncontaminated marine mollusks usually lie between
0.5 and 3.0 pg/g (Eisler 1981). Levels recorded here, for oyster, chamids, spondylids, and
octopus were mostly within this range (Tables 12-14).

1.4.6 Cr_in Crustaceans:

In general, chromium seldom exceeds 2 pg/g in the edible tissues of crustaceans and is usually
less than 1 pg/g (Burdon-Jones ef al. 1975, Denton unpublished data, see Table 5). Results
from the current study are in agreement with this (Table 14).

L4.7 Cr in Ascidians:

Reported chromium levels in whole ascidian range from 5.5 ug/g in Ciona intestinalis
(Papadopoulu and Kanias 1977) to 144 pgf/g in Eudistoma ritteri (Levine 1961). Levels
reported here for ascidians from Guam harbors were at the lower end of this scale and ranged
from 1.03-5.08 ug/g in Ascidia sp., and from 1.82-9.65 ng/g in Rhopalaea sp. The utility of
tunicates as indicators of heavy metal pollution is suggested by the work of Papadopoulu and
Kanias (1977) but has yet to be substantiated.

L48 Cr in Fish:

Chromium does not normally accumulate in fish tissues and levels in flesh are almost aiways
less than 1 pg/g (Table 5). The work of Horowitz and Presley (1977) is a notable exception to
this general rule. These authors determined chromivm in the muscle tissue of 8 species of
fish, from the outer continental shelf region of southern Texas, and reported levels of 2.0-7.7
pg/g. In our study, levels measured in fish muscle were predominantly below the limits of
analytical detection and ranged from <0.1-0.6 pg/g (Table 15). Similarly low ranges have
been reported for fish from Austrakian coastal waters (Burdon-Jones ef al. 1975, Plaskett and
Potter 1979).

1.4 9 Concluding Remarks:

Clearly, chromium is not an element of environmental concern in the areas investigated
during this study.

1.5 Copper (Cu}):

Copper is highly toxic to plants and invertebrates (Brown and Ahsanullah 1971, Denton and
Burdon Jones 1982), and ranks among the more toxic heavy metals to fish (Denton and
Burdon-Jones 1986d, Moore 1991). Dissolved copper levels in open ocean surface waters are
low, being generally in the order of 0.2 pg/l, or less. In uncontaminated nearshore surface
waters, levels are significantly higher, often approaching 1 pg/l, while in highly polluted
waters they may exceed 10 pg/l (Burdon-Jones and Denton 1984a). Copper levels in clean,
non-geochemically enriched sediments are around 10 pg/g, or less, In contrast, severely
polluted environments can yield sedimentary copper values in excess of 2,000 pg/g (Legoburu
and Canton 1991, Bryan and Langston 1992).
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Copper levels previously determined by us in Guam hatbor sediments ranged from 0.49-181
ug/g (Denton ef al. 1997). The highest levels were encountered in samples from Hotel Wharf
in Apra Harbor (85-181 pg/g), the western end of Commercial Port in Apra Harbor (72.7-127
ug/g), Pry Dock Island in Apra Harbor (35.7-75.4 ng/g), the inner harbor area of Agana Boat
Basin (48.0-96.1 pg/g), and adjacent to the Cocos Island ferry terminal at Merizo Pier (83.1-
168 pg/g). Biological samples were collected from these and other sites during the present
investigation and the data are discussed below.

1.5.1 Cu in Algae:

According to Moore (1991), total copper levels in marine plants are typically less than 10
ug/g, except near polluting sources. This certainly appears to be true for algae. For example,
Denton and Burdon-Jones (1986a) analyzed 47 species of algae from 20 sites, along the entire
length of the Australian Great Basrier Reef, and reported values ranging from 0.74-7.2 pg/g.
Most of the data felt between 1 and 4 pg/g. In an earlier investigation, these researchers
analyzed Padina tenis and P. tetrostromatica from Townsville coastal waters. Sampling was
conducted at monthly intervals for one year. Copper levels were found to range from 2.0-9.7
pg/g and 1.4-5.1 ng/s in P. tenuis and P. fefrostromatica respectively. Only in the relatively
polluted, upper reaches of Townsville Harbor did levels exceed 10 pg/g, and reached a high of
58.9 pg/g in P. tetrostromatica found growing there. Copper fevels in the water from this
particular site averaged 4.6 pg/l, at least an order of magnitude higher than average
concentrations measured outside the harbor area (Burdon-Jones et al. 1982).

In the present study, copper levels in Padina sp. substantially surpassed 10 pg/g at the western
end of Commercial Port (site d) and Dry Dock Island (site €) in Apra Harbor, and at the Cocos
Island ferry terminal at Merizo Pier (Table 8). Cleatly, areas of copper enrichment are
indicated at each of these sites. Elsewhere in the study areas, copper levels in Padina sp. were
low and ranged from 0.57-2.98 pg/s.

Algae have a relatively high accumulation capacity for copper and Jevels in excess of 100
pg/g are not unusual in species from highly polluted waters. For example, Bryan and
Hummerstone (1973a) reported a maximum copper concentration of 301 pg/g in the thallus of
the brown alga, Fucus vesiculosus, from a contaminated estuary it southwest England.

1.5.2 Cu in Sponges:

Most of the sponges analyzed during the current work contained reasonably high copper
concentrations (Table 9). Whether this is a reflection of elevated ambient copper availability,
or the group’s natural affinity for this element, is not entirely clear. The copper concentration
profiles depicted by Dysidea sp. certainly seem to parallel those of Padina sp. insofar as
identifying the westem end of Commercial Port as copper-enriched compared with Echo
Wharf and Agat Marina. The clevated level of copper determined in an unidentified brown
sponge from Hotel Wharf may well be reflective of the high sedimentary copper levels known
to exist there. However, in the absence of adequate baseline data for local sponges, such
claims are difficult to substantiate. An eatlier study by Lowman et al. (1966) revealed copper
Jevels in species of sponges from Puerto Rico of 8.5-31.0 pg/g. Most of the data gathered

.

during the present study fall within, or just beyond, this range.
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| example, Australian oysters from clean, coastal waters near Townsville contained 200-500

pg/g (Burdon-Jones ef al. 1977). Copper levels of up to 500 pg/g were found in Tasmantan
oysters from areas of minimal metal pofiution compared with up to 2,500 pg/g in specimens
from contaminated areas (Thrower and Bustace 1974).

Oysters from harbor areas are typically high in copper, reflecting the increased environmental
abundance of this element from sources such as algaecides and anti-fouling paints. Burdon-
Jones ef al. (1977) conducted monthly surveys of heavy metals in Saccostrea amasa and S.
cucullata, from Townsville Harbor, over a ane-year period. Mean monthly levels determine
for each species ranged from 417-1,775 pg/g, and 661-1,911 pg/g for §. amasa and S.
cucullata respectively. Phillips (1979) determined similarly high values in S. glomerata from
Hong Kong waters (Table 5).

In the current study, the highest copper value recorded in an oyster was 3,047 ug/g. This was
measured in a single specimen from the inner harbor area of Agana Boat Basin (Table 12).
The geometric mean copper jevel for 13 oysters analyzed from this location was 1,968 ug/g
and is comparable with the Australtian study mentioned above. It is also a clear indication of
copper contamination in this area. Oysters from the Apra Harbor were also copper enriched
with single specimen maxima ranging from 1,483 ug/g at Dry Dock Island (site €) to 2,971
ng/g at Echo Wharf (site f). In contrast, levels in oysters from Agat Marina and Merizo Pier
area were less than 1,000 pg/g suggesting lower copper availability in these areas.

Not much is known about the bioindicator potential of the other bivalves examined during the
present study, pamely the chamids and spondylids. Some preliminary work carried out in
Australia has shown that copper levels in Chama iostoma are linked to the reproductive cycle
and are significantly higher in specimens with well-developed gonads (Burdon-Jones and
Denton 1984b). Nevertheless, mean COpper concentrations in this species, from unpoftuted
waters, rately exceed 20 pg/g and usually drop below 10 ug/g after spawning. In the present
study, mean levels determined in C. lazurus and C. brassica were mostly below i0 ng/g
(Table 13), This strongly suggests that chamids can maintain levels of copper in their tissues
to within certain limits irrespective of changes in this element’s ambient availability.
Spondylus, on the other hand, does not appear {0 poSSess the same regulatory capability. On
the contrary, copper levels in {ocal representatives of this group were generally much higher
than those found in related species from clean waters of the Great Barrier Reef (Table 5).

Copper is naturally high in cephalopod mollusks and is largely related to the storage of copper
in the liver and the presence of the copper-based respiratory pigment, haemocyanin, in the
blood (Bryan 1976). It should be noted here, that while some bivalves also possess
haemocyanin, oysters do not.

1.5.6_Cu in Crustacedns:

Copper levels in decapod crustaceans aré also naturally high, particularly in the
hepatopancreas and occasionally the gonad. Such high levels are associated with their
metabolic requirements and the presence of haemocyanin in their blood in much the same way
as for cephalopods. Since both groups are capable of metabolically regulating levels of

copper in their tissue, they are of little value as bioindicators of copper poltution. In point of

~ 47 -




e T . e pp—

ONSETE P B0 PAULIOHDd SISA[RUS = P (E1EP OF = pU pBiom om FF1 se SUONENTOWD TH = 4 'PNSSH 0AT] =T SNSSPORSNI = N

st 6Iz o'l 050> 620>  $80°0 0z61 9Tl > L6'l &8s 17 44 1

6L o0 90 ¥E0> 90>  ZTI00 £€1 LT0> 00> 05T LO0> I3 052 36, Unf~¢ (q) toquep] eady suLoon OSBN

6L ¥zl LTl 60>  ¥50> 1400 LEE 80> 630 68'¢ 91z T

8 €Ll €10 s£0>  9T9>  SI00 1z LI 00> L8O Loo> W 581 86, - (¢) Joqiey edy SILIGITUR OSEN

A 85t pu 829>  L¥E> 300 6 SHT> 0LO> 90 sL1> I

I8 197 820 LOI> 60> 810D L) zso> 0> 9’1 o> W Sl 86, T~ (2) soquey wady srgousn oSO

pu pu pu pY pu pu pu pu pu pu 124 1

YL 191 £E0 ¥E0>  9F0>  SEL0 £6'0 LUo> 00> 601 woe> W $'9l £6, BNr-6 {p) Joqsey] exdy srajua Bt SrABPOLON
£5 8'6¢ 30 §50>  ILo>  L6OO 8T€ 30> 31 ¥l 1£1 1

¥L 05z 1o 750> ¥T0> 0810 we §T0>  §00> L€l o> W 891 36, U5 (p) toqsep] vxdy snepupdio spGIvpPOUTY
6r 0sL LET S>> $80> ¥ROC §0'9 SLO> §1F 5T $2°0 1

¥L ot A $E0> 9T0> $97°0 £9°1 LEO> W00 61's L0'0> W oLl 86, -6 (p}-toqre}] v1dy snawedp smAITpOUOT
187 T8 090 69> LU'o> €TI0 L5T §T'0> 190 sH'6 ¥i'g 1

oL 8HT £0°0 o>  0T0>  ¥870 601 120> 0> £1Z 60:0> W oLl 86, U6 (p) Joquey eady snajuadn strovpouopy
pu pu pu U pu pu pu p¥ pu pu pu 1

LL L¥T L0 ZE0>  SI'e>  §6I0 LLE 9F'0>  £00> LLl o> n 0Ll 36, Un(-6 (p) Joqrep] vidy snopuaSue snpavpoucy
pu pu pu pu pu pu pu pu pu pu pu 1

oL 631 910 o> 6P0>  £5T0 £5°1 Z0> ¥00> Tt 60> W gLt 36, WnE-6 (p} Joque} v1dy SHEUBTAT SHIAIIDPOUCHY
4 869 60°0 Wi>  EL0> 960 678 650> £5°0 07T SPG> 1

5L T 00> 60> 9Z0>  IPOO 080 810>  SO0> £2'S 10> W Sl 86,2281 wseg oy SUESY snopuadir SMRIOOPOUOH
(24 19 110 $LT> 191> rzto 98’9 8> £3°0 z8i I£L 1

8 Lrl 100>  0£1>  DL0>  $IT0C LLO o> 10> 86’9 goo> W $El 86, 99-ZT w1 oznepy Dags oy smolny

19 SLE 100>  §HO>  LZO> 9300 LI $TO> L8O POL D> T

SL Il 00> 1ve> 0> LG 05'0 ste> p00> 291 0l W §0T 86,990-IL I oZUSI smaomoipdoLigns SRULLET
1§ 9Z5 z00 LLo> 90> 06ED £1'6 ¥os 06'1 1 8T0> 1

v LIl 100> 9vp>  §TO>  +ITO o $ITO 00> §T1 o> W SHT 36,9012 BULIR] 108y sypnossdoLigis snutapay
B ODE pu LL9>  6PEr  S509 9T GPE> 91> §5°0 9T > 1

3L £+ $0'0 §50>  LTO>  6Z0°0 160 620> OI0> 6€'1 sre> W +I 66, UR-ZT ewEy WY snynnbo snyjoudo1d]

- (w2}
’H% YZ uS 94 IN SH n) D P> sy 3y F wduwwy @  (3ns) uoyesoy sapads
& waoyg

(34 Kxp 3/811 se vIBP) SI3JEAA JOQIRE WILNL) WO ] YSI] JO SINSSL], Ul S[BIIA AABIH

(u02) ST JlqeL

- T8 -




1.6 Mercury (Hg):

Mercury is highly toxic to aquatic organisms, particularly in the organic form (Moore 1991).
Concentrations of dissolved mercury in the open ocean typically range from <0.010-0,003
pg/l (Miyake and Suzuki 1983). Slightly higher values of 0.003-0,02 pg/t are found closer to
shore, and polluted estuarine waters may contain up to 0.06 pg/l (Baker 1977). Sediment
concentrations of mercury in unpolluted, non-geochemically enriched areas, usually do not
exceed 30 ng/g (Bryan and Langston 1992, Benoit e al. 1994), and may be as low-as 4 ng/g
(Knauer 1976). Estuarine sediments, adjacent to heavy industrialized areas or mercury
mining activities, can be three to five orders of magnitude higher than this (Langston 1986,
Benoit ef al. 1994). Values in excess of 2,000 pg/g were found in sediments from the grossly
contaminated Minimata Bay area in Japan, following the mass mercury-poisoning episode of

the late 1950’s, and probably rank among the highest values ever reported for this element
(Tokuomi 1969). _

Mercury levels in Guam harbor sediments ranged from a low of 2.72 ng/g at Agat Maring, to a
high of 741 ng/g at Hotel Wharf in Apra Hatbor. Moderate enrichment was also noted at the
Shell Fox-1 Fuel Pier (202-256 ng/g), the western end of Commercial Port (107-264 ng/g),
and at Dry Dock Island (160-428 ng/g). All four sites were revisited during the present
investigation.

The reader is reminded here, that all mercury data presented in Tables 8-15 are expressed on a
wet weight rather than a dry weight basis. Where appropriate, these values have been
recalculated on a dry weight basis during the following discussion (unless stated otherwise) to
facilitate ease of comparison with levels recorded in some of the literature cited. '

1.6.1_Hg in Algae:

Marine algae have a relatively high affinity for mercury. For example, a high of 20 pg/g was
reported for the brown alga, Ascophyllum nodosum, from Hardangerfjord, in Norway (Haug et
al. 1974). Apparently, wastewater discharged from a nearby metal smelter was the primary
source of mercury pollution in this particular case (Myklestad et al. 1978). In an earlier study,
Jones el al. (1972) measured mercury in 10 species of algae from the polluted Tay estuary in
the UK and reported a maximum of 25.54 pg/g (6.26 pg/g wet weight) in the green alga, Ulva
lactuca. This still stands as one of the highest values ever recorded for marine algae. Among
the lowest values ever found, are those given by Denton and Burdon-Jones (1986a) for 48
species of algae from the Great Barrier Reef. In this instance, Mercury concentrations ranged
from <0.011-0.320 pg/g (<0.001-0.024 pg/g wet weight). These values are comparable with
the values of 0.002-0.52 pg/g given by Kim (1972) for 17 species of algae from Korean
waters. They are also within the range of values (not detectable 10 1.03 pg/g) reported by
Sivatingam (1980) for 26 tropical species from Malaysia.

Very low mercury concentrations were detected in Padina sp. during the current work.
Levels ranged from <0.002-0.026 ng/g wet weight (Table 8), or <0.011-0.137 ug/g, when
expressed on a dry weight basis. While these values are hardly indicative of polluted
conditions, they do indicate a light enrichment of mercury in the Apra Harbor area.
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ranged from 0.022-0.078 pg/g wet weight. Specimens from Agana Boat Basin contained
marginally higher concentrations of 0.080-0.149 pg/g wet weight. However, these values are
well below the maximum of 10 ug/g (~2.0 pg/g wet weight) recorded in oysters from
Minimata Bay during the late 1960’s (Matida and Kumada 1969).

Burdon Jones and Denton (1984a) looked at mercuty in the chamid, Chama iostoma, from
pristine, offshore areas of the Great Barrier Reef, and reported levels that ranged from 0.006-
0.032 pg/g wet weight. Nearer shore, the range widened from 0.018-0.326 pg/g wet weight.
The authors concluded that chamids have potential as bioindicators of mercury pollution.
Data from the current work tends to support their conclusion and infers enrichment in the
Apra Harbor area when compared with previously reported data from elsewhere (Table 5).

Burdon-Jones and Klumpp (1979) conducted a similar study with the spondylid, Spondylus
ducalis, but failed to establish a clear link between tissue levels of mercury and distance
offshore.  Likewise, Burdon-Jones and Denton (1984a) found identical mercury
concentrations of 0.017 ug/g wet weight in S. varians collected from two locations, 10 km and
200 km offshore. In the present study, the mercury profiles depicted by S. multimuricatus
were contrary to what was expected, based on our carlier sediment analysis. Moreover, levels
were surprisingly low compared with levels found in related species from relatively clean
Australian waters (Table 5). On the strength of these findings, we conclude that spondylids,
hold little promise as bioindicators of mercury pollution.

Cephalopod mollusks appear o have relatively high affinities for mercury. For example,
Renzoni ef al. (1973) reported levels of 0.75-2.32 pg/g wet weight in the tentacles of Octopus
vulgaris from a polluted section of the Tyrrhenian coast. Levels in the liver were appreciably
higher and topped 200 ng/g wet weight in one individual. These values are far greater than
those found in the same tissues of octopus from Apra Harbor during this study (Table 14).

1.6.6_Hg in Crustaceans:

Crustaceans tend to mirror environmental levels of mercury under certain conditions. The
edible portions of two species from Minimata Bay, for example, yielded levels of 41 and 100
pg/g (~8 and 20 ng/g wet weight respectively) at the time the mercury pofiution problem was
discovered (Matida and Kumada 1969). Normally, however, mercury levels in crustacean
tissues remain well below those considered hazardous for human consumption (Eisler 1981)
and are of the same magnitude as those presented here for mantis shrimp from Apra Harbor
(Table 14).

1.6.7_Hg in Ascidians:

Little published information exists for mercury in tunicates. Yannai and Sachs (1978)
analyzed the ascidian, Ciona intestinalis, from the eastern Mediterranean area and found
mercury levels of 0.03-0.12 pg/g wet weight, in whole organisms. Levels reported here for
Apra Harbor ascidians were generally lower and ranged from 0.007-0.041 pug/g wet weight.
Whether tunicates can adequately reflect changes in mercury’s ambient availability remains to
be unequivocally established although Matida and Kumada (1969) reported a high of 35 ng/g
in one species from Minimata Bay.
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general rule of thumb, however, PCB concentrations in marine organisms from relatively
uncontaminated regions are in the low ng/g range

All referenced data included in the following discussions are expressed on a wet weight basis
unless indicated otherwise.

2.1 PCBs in Algae:

0PCB concentrations determined in Padina sp. during the current work ranged from non-
detectable to 1.85 ng/g (Table 16). In all cases, the lower chlorinated homologues (Clz-Cls)
predominated. Amico ef al. (1982) noted similar findings with macrophytes from Sicilian
waters. They suggested that the inability of algae to metabolize the lower chlorinated PCB
congeners was the primary reason for this. There are, of course, other equally plausible
explanations. For example, since algae derive PCBs from the water column by direct
partitioning, it seems reasonable to assume that the lower chiorinated PCBs would be
preferentially accumulated over their higher chlorinated counterparts by virtue of their higher
water solubilities and, hence, greater abundance in the hydrosphere.

Macroalgae have been used very little as bioindicators of PCBs, compared with their frequent
use for studies of trace metals (Phillips 1986a). The reasons for this are not entirely clear
because the group, as a whole, demonstrates a marked bicaccumulation capacity for PCBs and
possess no apparent regulatory mechanisms for these compounds. One of the best known
studies supporting this group’s bioindicator potential is that of Amico and co-workers cited
above. In this study, PCBs were measured in a variety of seaweeds from the east coast of
Sicily. Concentrations ranged from 37-591 ng/g dry weight (~4-60 ng/g on a wet weight
basis) and there were no major differences between the taxonomic groups studied. The
highest concentrations were found in algae from an area near Syracuse that was allegediy
polluted by nearby industrial activity (Amico et al. 1982). Pavoni et al. (1990) conducted a
similar study on seaweeds in the Lagoon of Venice, in the Adriatic Sea, and reported PCB

levels ranging from 13-120 ng/g dry weight. Levels encountered in both of these studies are
appreciably higher than we found here in Padina sp.

More recently, Hope ef al. (in press) monitored the same 20 congeners as we did in a range of
biota from Midway Atoll, a nationa! wildiife refuge, in the north Pacific. An overall average
3,0PCB concentration of 44.6 ng/g dry weight was given for the brown alga, Dictyota
acutiloba. This translates to ~4.5 ng/g wet weight and is a little over twice the highest
$,PCB concentration given here for Padina sp. In the same paper, Hope and colleagues
reported Z20PCB levels in sediments of 1-2 ng/g, indicative of 2 relatively clean environment.

2.2 PCBs in Sponges:

Remarkably high Z0PCB concentrations of 712-9,740 ng/g were found in the sponge Dysidea
sp. from Apra Harbor (sites ¢, d and £). This particular sponge has a lipid content of around
20-30%, which is at least an order of magnitude higher than most other invertebrate species.
Thus, a high bioaccumulation capacity for PCBs and other lipophilic substances is not
altogether unexpected. Nevertheless, it would be interesting to expand the database for
Dysidea sp. and include representatives from more remote locations.
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1.7 Nickel (Ni):

Nickel is only moderately toxic to most gpecies of aquatic plants and is one of the least toxic
inorganic agents to invertebrates and fish (Denton and Burdon-Jones 1982, 1986d, Moore
1991). Open ocean concentrations of dissolved nickel normally lic between 0.1 and 0.3 ng/t
(Boyle et al. 1981, Bruland 1979, Denton and Burdon-Jones 1986¢). In potluted nearshore
and estuarine waters, levels of between 5 and 30 pg/l have been reported (Halcrow et al. 1973,
Abdulla and Royle 1974, Boyden 1975). Total nickel residues in clean coastal sediments
typically range between 10 and 20 pg/g (Bryan and Langston 1992) but may fall below 1 pg/g
in unpoiluted coastal regions, away from nickel bearing geological formations (Moore 1991).
In contaminated regions, concentrations may exceed 200 ug/g (Fowler 1993), Sedimentary
nickel levels recently determined in Guam harbors ranged from <0.2-71.0 ug/g with areas of
enrichment confined to Agat Marina and Merizo Pier. Baseline levels throughout the area
were estimated at 1-3 ug/g. :

1.7.1 Niin Algae:

In general, algae from clean water areas contain relatively low concentrations of nickel
although there are some notable exceptions, particularly among the Rhodophyta (Denton and
Burdon-Jones 1986a). For example, the red algae, Amansia glomerala and Ceratodyction
spongiosm, from remote sites along the Australian Great Barrier Reef, yielded highs of 17.0
and 36.9 pg/g respectively (Denton and Burdon-Jones 1986a). In contrast, levels found in the
brown algae, Padina spp., from this area ranged from 1.0-1.5 ng/g. Much higher levels have
been reported for this genus from relatively contaminated waters. For instance, Stevenson and
Ufret (1966) reported levels of 23-32 pg/g in P. gymnospora from Puerto Rico, while Agadi ef
al. (1978) found 8.0-18.3 pg/g in P. tetrostromatica from Goa, in southern India. The same
species from the upper reaches of Townsville Harbor contained a high of 13.1 pg/g (Burdon-
Jones et al.1975). In the present study, we determined nickel concentrations in Padina sp.

ranging from ~1-3 pg/g (Table 8), indicative of low ambient levels of dissolved nickel in
Guam harbor waters. :

1.7.2 Ni in Sponges:

No previous reports of nickel levels in sponges were found in the fiterature. The data
presented here, for Guam species, indicates that certain members of the group are capable of
accumulating this element to respectable levels. However, there is no firm evidence to
suggest that any of the species examined are useful bioindicators of nickel enrichment.

1.7.3_Ni in Corals:

From the limited available data it would appear that coelenterates normally do not concentrate
nickel in their tissues, However, among the soft corals, there appears to be one or two
exceptions. For exampie, Lithophyton sp. taken from Heron Island, on the Great Barrier Reef,
contained 70 pg/g compared with levels of <0.5 pg/g in Sarcophyton and Sinularia spp. found
growing beside it (Denton and Burdon-Jones 1986b). Likewise, the temperate soft coral,
Alcyonium digitatum, from the Irish Sea, was found to contain 17.0 pg/g (Ritey and Segar
1970). Soft corals analyzed during the course of the present work contained nickel levels of
0.2-0.8 pg/g (Table 10), in tine with levels recorded earlier for these genera from Australian
coastal waters (Burdon-Jones and Kiumpp 1979, Burdon-Jones and Denton 1984b).
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Figure 6. Polychlorinated Biphenyls in Sponges from Apra Harbor
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Primary deposition sites for nickel in cephalopod mollusks seem to vary between subgroups.
In octopus, the liver is the chief storage organ as shown here (Table 14). The same is true for
cuttlefish (Table 5), whereas, in squid, levels are distributed fairly equally between tissues
(Horowitz and Presley 1977).

1.7.6 _Ni in Crustaceans:

Nickel levels in the edible tissues of crustaceans are typically low and rarely exceed 2.0 ng/g,
according to data presented by Burdon-Jones ef al. (1977) and Hall et al. (1978). Levels
encountered in mantis shyimp during the present investigation are in agreement with these
carlier findings. Interestingly, the exoskeleton has been found to have high nickel adsorbing
properties in certain species (Yoshinari and Qubramanian 1976, Fowler 1977).

1.7.7 Niin Ascidians: _

According to Bryan (1976), average nickel levels in ascidians are around 8 ug/g although he
fails to pinpoint his data sources. ‘We came across only one reference of any value and that
was by Tkebe and Tanaka (1979). These authors reported a nickel concentration of 0.13 pg/g
in the tunicate, Halocynthia roretzi, from an unspecified location. This translates to around
2.6 pg/g on a dry weight basis, assuming a 95% water content, and lies within the range
determined here for ascidians from Apra Harbor (Table 14).

The flesh of most marine fish rarely contains nickel concentrations in excess of 1 ne/e,
although levels of up to 10.8 pg/g have been reported in the literature (Roth and Hornung
1977). Plaskett and Potter (1979) gave values for nickel in fish muscle from Cockburn Sound,
Australia, which ranged from 0.11-3.88 pg/g. Burdon-Jones et al. (1975) detected nickel in
only one out of 18 §sh from Townsville coastal waters. All the rest had levels below an
analytical detection limit of 0.2-0.9 pg/g. Likewise, Denton and Burdon-Jones (1986¢) failed
to detect nicke! in the axial muscle of 190 fish, representing 50 different species, from several
different trophic levels along the length of the Great Barrier Reef.  Hepatic nickel
concentrations determined by these workers were also found to be below the limits of
analytical detection. Tt comes as little surprise, then, that nickel residues were undetectable in
muscle and liver tissues of every fish analyzed during the present study.

1.7.9 Concluding Remarks:
In light of the data presented, nickel does not appear to be a metal of environmental concern in
any of the harbor environments investigated.

1.8 Lead (Pb):

Although inorganic lead is only moderately toxic to aquatic plants and animals, organolead
compounds, particularly those used as antiknock agents in gasoline, are highly toxic to all
forms of life (Denton and Burdon-Jones 1986d, Moore 1991). Inorganic lead is barely soluble
in seawater and levels in open ocean waters typically range from 0.005-0.015 pg/l. Even in
highly polluted waters, levels are unlikely to rise above 0.05 pg/l (Burnett ef al. 1977). Thus,
particulate lead accounts for >75% of total lead in most waters (Moore 1991).
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Figure 8. Polychlorinated Biphenyls in Sea Cucumber from Apra Harbor
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1.8.4_Pb in Sea Cucumbers:

From the literature, it would seem that echinoderms are unable to regulate lead levels in their
tissues and therefore may serve as potentially useful indicators of environmental
contamination by this metal. Stenner and Nickless (1974) reported lead levels of up to 460
ug/g in various echinoderms from the West Coast of Norway. Matsumoto (1964) gave values
of up to 14.4 pg/g wet weight in Holothuria sp. from lead-contaminated coastal waters of
Japan, while Denton (unpublished data) found 3.8 pg/g in the same genera from a residential
beach in Townsville, Australia. In contrast, Stichopus variagatus, from pristine waters of the
Great Barrier Reef, contained <1.0 ng/g of lead in their body wall muscle (Burdon-Jones and
Denton 1984a). Similarly low concentrations were found in both species of sea cucumber
taken from Guam harbors during the present study (Table 11).

1.8.5 Pb in Mollusks:

Bivalves derive their metal loads primarily via the ingestion of food and suspended
particulates, and are generally considered to be excellent indicators of heavy metal pollution
(Phillips 1980). However, the utility of oysters as indicators of lead pollution is still a matter
of some debate. The published data for lead in oyster tissues currently ranges from <0.1-84
ng/g, with the great majority of figures being jess than 10 pg/g (Eisler 1981) in keeping with
the rtesults presented here (Table 12). It certainly seems like oysters have bioindicator
potential for lead, although the work of Denton and Burdon-Jones (1981) suggests otherwise.
These researchers examined the uptake and depuration kinetics of lead in the black-lip oyster,
Saccostrea echinata. They found +his bivalve’s affinity for lead to be much lower than that
shown for cadmium and mercury. Moreover, the biological halflife of lead in this species
was relatively short, in the order of 30 days. It was concluded, therefore, that . echinata was
not a particularly sensitive indicator of lead. Moreover, its usefulness as a long-tenm
integrator of this element was questionable in areas where ambient levels fluctuated widely.
This latter failing could certainly account for the high variability noted in specimens collected
from Agana Boat Basin during the current study.

The utility of the chamids as indicators of lead pollution is also suspect, based largely on their
poor sensitivity and lack of response in areas of known lead-enrichment (Burdon-Jones and
Klumpp 1979). Spondylids, on the other hand, are excellent candidates and readily respond to
changes in ambient lead availability. They also have a high affinity for lead, concentrating it
almost exclusively in the enlarged kidney in much the same way as tridacnid clams (see
Denton and Heitz 1992, 1993). Previous studies with Spondylis ducalis from Australian
waters have clearly shown that lead concentrations in the kidney of this species are highly
correlated with distance from the coast. Specimens collected from patch reef areas 3, 24 and
42 km offshore, for example, contained mean renal lead levels of 40.3, 18.8 and 15.8 ug/g
respectively (Burdon-Jones and Klumpp 1979).

Mean lead levels in whole soft tissue homogenates of S. ducalis from remote locations of the
Great Barrier Reef were understandably lower and ranged from 1.63-5.50 ug/g (Burdon-Jones
and Denton 1984a). In the present study, lead levels in whole soft tissues of S. multimaricatus
from Agat Marina were of a similar order and ranged from 13-63 ug/g (Table 13).
Predictably, levels were considerably higher in specimens from the inner portion of Agana
Boat Basin and clearly identify this area as a zone of lead-enrichment.
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2.6 PCBs in Crustaceans:

Crustaceans are a comparatively well worked group in terms of their PCB content and are

frequently incorporated into marine pollution monitoring programs. While some notable PCB
Jevels have been documented in representatives of this group, metabolic transformations of
some of the lower chlorinated congeners has been demonstrated in certain members, and this
could account for some of the large residue differences often observed between species (Porte
and Albaigés 1993). For example, shrimp (Parapenaeus longirostris) sampled throughout the
Mediterranean comtained PCBs in muscle tissue that rarely exceeded concentrations of 30
ng/g. In contrast, mean levels reported for crabs (Carcinus mediterraneus) from the same

sites were as high as 1,448 ng/g (Fowler 1987). As a general rule, however, PCB levels in
shrimp, crabs and lobsters, from relatively uncontaminated waters,

usually fall well under 10
ng/g (Monod er al. 1995, Everaarts, 1998). Baseline data for PCBs in stomatopod crustaceans
from similar environments are currently unavailable,

but, in all probability, levels are lower
than the value of 38.2 ng/g determined in the tail muscie of mantis shrimp during the current
investigation (Table 2T). )

2.7 PCBs in Ascidians:

,,PCB concentrations determined in ascidians from Apra Harbor during the present study
were low and ranged from 0.10-3.0 ng/g. Comparable data for ascidians from elsewhere,
were not forthcoming at the time of writing this report. However, a total PCB concentration
of 49 ng/g dry weight was reported by Contardi et al. (1979) for the salp, Pyrosoma

atlanticum, from the Ligurian Sea. This translates to ~2.5 ng/g on a wet weight basis,

assuming 95% water content, and is within the range of values reported here (Table 21).

2.8 PCBy in Fish:

Marine fish are a valuable source of high quality protein to people all over the world. Their
importance in this regard has been a primary driving force behind the extensive monitoring of
edible species for PCB residues over the last 20 years. In more recent times, the popularity of

fish as sentinel organisms for PCBs, has added greatly to the volume of published information
that currently exists for this group.

A compilation of the reported data for PCBs in fish muscie is given in Table 6. From these

data, it is apparent that the flesh of marine fish from relatively uncontaminated waters usually
contains PCBs in the low ng/g range. On the other hand, fish from PCB contaminated
environments may contain levels two to three orders of magnitude higher.

PCBs found in fish during the present study are summarized in Table 22. A total of 75
specimens were analyzed of which 40 were from Apra Harbor, 15 from Agana Boat Basin, 8
from Agat Marina, and 12 from Merizo Pier. %,0PCB concentrations in axial muscle ranged

from 0.09-85 ng/g overall. Thirteen fish from Apra Harbor contained levels greater than 20

ng/g. A further 13 fish contained levels between 10 and 20 ng/g and were predominantly

from Apra Harbor and Agana Boat Basin. A similar number contained between 5 and 10 ng/g
while levels ranging from 1-5 ng/g occurred in 23 fish, with representatives from all four

harbors. All the rest had levels of less than 1 ng/g and were exclusively from Agat Marina
and Merizo Pier.
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1.8.9 Concluding Remarks: _ :

In light of discussions presented above, it is clear that some mild lead-enrichment has
occurred in the sediments and certain biota of Agana Boat Basin and Apra Harbor, However,
the data indicate that such enrichment is generally localized and has not significantly impacted
upon the quality of edible resources inhabiting these waters.

1.9 Tin (Sn):

Naturally occurring inorganic tin is relatively harmiess to aquatic organisms. In contrast,
organotin compounds like tributyl tin (TBT), a modern-day biocide in antifouling paints, are
extremely toxic (UNEP 1985, Bryan and Langston 1992). All forms of tin are relatively
insoluble in seawater. Inorganic tin concentrations in uncontaminated waters are commoniy
around 0.01 pg/t (Forstner and Wittman 1979). TBT is usually of the same order but may
exceed 0.6 pg/l in harbors and marinas (Langston et al. 1987, Waldock et al. 1987). In
extreme cases identified in England and Denmark, concentrations of up to 3 pug/l have been
detected (Muller et al. 1989).

Natural tin concentrations in uncontaminated, non-mineralized sediments usually lay between
0.1-1.0 pg/g, and in geotogicaily enriched areas may exceed 1,000 ug/g (Bryan et al. 1985,
Bryan and Langston 1992). Typical surface sediment values for TBT range from 0.005-0.05
ug/g and usually account for less than 5% of the total tin present (Brian and Langston 1992).
An all time high of 38 pg/g TBT was found in sediments from Suva Harbor, Fiji (Stewart and
de Mora 1992).

Baseline levels of tin in marine carbonate sediments from Guam were estimated to be less
than 0.1 pg/g. Total tin Jevels in local harbor sediments mostly ranged between 1-3 ug'g
although levels between 10 and 45 pg/g were occasionally observed (Denton ef al. 1997).
Levels of TBT and other organotin compound in local harbor sediments, aithough currently
unknown, are assumed to be extremely high in places. For example, an earlier investigation
revealed total tin concentrations of 148-1055 ug/g in sediments adjacent to a US naval ship
repair and maintenance facility, in the inner Apra Harbor area (Belt Collins, Hawaii 1993).
Undoubtedly, these high values are related to the sandblasting and repainting of naval docks
and vessels with organotin-based anti-fouling paints.

Total tin levels found in biota from Guam harbors during the current work are discussed
velow. The fact, that little to no comparative information exists for several groups examined,
highlights the need for reliable baseline data for this clement in tropical marine ecosystems.

1.9.1 Sn in Algae:
Fresnwater macrophytes biomagnify tin over aqueous levels achieving experimental

concentration factors in the order of 90,000 for inorganic tin (Wong ef al. 1984) and 30,000
for TBT (Maguire ef al.1984). In contrast, concentration factor estimates for marine algae,
from field data, are about an order of magnitude lower (Smith and Burton 1972, Bryan and
Gibbs 1991).
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1.9.5 Sn in Mollusks:

Certain bivalves have a high affinity for tin, reflecting their inability to metabolize both
inorganic and organic forms of this element. For example, specimens of the long-neck clam,
Mya arenaria, from Poole Harbor were found to contain total tin concentrations of 7.62-21.4
ug/g. Apparently, organotin compounds (TBT and DBT) accounted for around 95% of total
residues (Langston ef al. 1987). Even higher TBT levels, 36.8 pg/g were found in this species
fom the Itchen Estuary, in the south of England (Bryan and Gibbs (1991).

Oysters have 2 somewhat lower affinity for tin than M. arenaria. For example, maximum
total tin and TBT levels in Crassostrea gigas from the heavily contaminated waters of
Arcachon Bay, on the French coast, ranged from 0.7-7.0 pg/g and 0.4-1.6 ug/g respectively
(Alzeui et al. 1986). A higher TBT range of 0.27-0.33 pg/g wet weight (~14-1.7 pg/gona
dry weight basis) was reported by Thain and Waldock (1986) for Ostrea edulis from the
polluted Crouch estuary, in eastern England. Control oysters from uncontaminated sites
contained 0.1 pg/g wet weight (~0.4 pg/g dry weight). In the current study, total tin levels in
oysters from Guam harbors ranged from <0.1-0.57 pg/g (Tablel2) and are, therefore, among
the lowest reported in the literature for this group. Interestingly, the highest levels
encountered throughout the study were in specimens collected from Apra Harbor in direct
contrast to that observed with the invertebrate groups discussed above.

No baseline data exists for tin in chamid and spondylid bivalve mollusks. Levels encountered
in both groups during the current work were similar to those in oysters (Table 13). They also
compare reasonably well with levels found in other bivalves (0.23-0.67 ug/g) analyzed by
Smith in the early seventies (Smith and Burton 1972). These particular specimens were taken
from Southampton waters (UK) at about the time that organotin compounds were gaining
popularity, as an alternative to copper and other heavy metals, in anti-fouling paints. It seems
unlikely, therefore, that they would have been severely contaminated with TBT.

1.9.6 Sn in Crustaceans:

Crustaceans possess the necessary enzymes io break down organotin compounds fairly rapidly
and, therefore, would not be expected to accumulate high concentrations of this element under
typical harbor conditions. Levels found in mantis shrimp from Apra Harbor during the
present study tend to confirm this (Table 14). However, relatively high total tin levels of 0.6-
2.0 ug/g wet weight (~3.0-10 pg/g dry weight) were found in the edible tissues of several
crustacean species analyzed by Hall ez al. (1 978).

1.9.7 Sn in Ascidians:

Total tin levels in the majority of ascidians analyzed during the current work were below an
analytical detection timit of 0.01 pg/g. Detectable concentrations ranged from 0.01-0.13 uglg
(Table 14). Comparable tin data for this group is restricted to one publication by Smith
(1970) who reported a total tin concentration of 15 pg/g in the internal organs of the ascidian,

Ascidia memula, from Southampton waters.
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Figure 11. Polychlorinated Biphenyls in Fish from Apra Harbor
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7inc levels in Guam harbor sediments were shown to span two orders of magnitude, ranging
from baseline levels of 1-5 ug/g at uncontaminated sites, to 552 ug/g at Hotel Wharf in Apra
Harbor. Levels in excess of 100 pg/g were also found in the inner Agana Boat Basin, at Shell
Fox-1 Fuel Pier, Commercial Port, and Dry Dock Island in Apra Harbor, and at the refueling
station at the Cocos Island ferry terminal, in Merizo (Denton et al. 1997). Biota samples were
collected in the vicinity of each of these sites. The data obtained are discussed below.

1.10.1 Zn in Algae:

Marine algae readily concentraie zinc. Among the brown algae, which are most commonly
used as indicators of heavy metal poilution, levels ranging from several hundred to several
thousand part per million (ng/g) have been recorded in species from severely polluted
environments (Bryan and Hummerstone 1973a, Fuge and James 1973, Haug ef al. 1974,
Stenner and Nickless 1974, Melhuus ef al. 1978). In clean environments, zinc levels are
usually less than 10 ug/g. For example, mean jevels of zinc in 48 species of algae from the
Australian Great Barrier Reef were 2.0, 2.7, and 2.2 ug/g in brown, red, and green
representatives respectively (Denton and Burdon-Jones 19862).

Zinc levels previously reported for Padina sp. range from 3.98-9.5ug/g in P. australasis from
the Australian Great Barrier Reef, to 440 pg/g in P, retrostromatica from the relatively
polluted upper reaches of Townsville Harbor (Table 5). In the cutrent study, we found a
relatively low mean zinc concentration of 11.0 pg/g in Padina sp. from the outer region of
Agana Boat Basin (algae were absent from the relatively turbid waters of the inner harbor
area). A marginally higher mean Jevel of 18.7 ng/g was encountered in Padina sp. from Agat
Marina, Clear evidence of inc-enrichment was found in algae from Apra Harbor and at
Merizo Pier, in the vicinity of the Cocos Island ferry terminal {Table 8).

Within Apra Harbor, mean levels of zinc in Padina sp. ranged from 45.8-182 ug/g, peaking at
Commerecial Port (site d). These values are very close to the range of means reported by
Burdon-Jones ef al. (1982) for P. tetrstromatica from the lower reaches of Townsville Harbor
(Table 5). These authors sampled monthly over one year to establish seasonal variability and
showed that zinc fluctuations in the algae (67.2-166 ug/g) mirrored those generally occurring
in the surrounding water (0.8-15.0 pg/l). It may be inferred from these data that dissolved

tevels of zinc in the waters of Apra Harbor are of the same order.

1.10.2 Zn in Sponges:

Very few papers have focused on the elemental composition of sponges and fewer again have
looked at zinc. Two reports were uncovered during the course of this work and are briefly
reviewed here. The first report by Lowman ef al. (1966) looks at metal levels in 2 number of
organisms from Puerto Rico coastal waters. The sponges analyzed during the investigation,
though not identified, yielded zinc concentrations of 63-180 pg/g. The second study by
Treland (1973) focused on heavy metals in a range of organisms from the polluted waters of
Cardigan Bay, in Wales (UK). In the latter investigation, only one species of sponge,
Halichondria panicea, was analyzed for zinc and levels reported ranged from 89-152 pg/eg. It
is difficult to draw conclusions from these limited data, although the similarity between the
two data sets implies that zinc concentrations remain fairly constant in all species of sponge
regardless of background levels in the surrounding water. The data obtained during the
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1.10.4 Zn in_Sea Cucumbers:

In echinoderms; zinc concentrations in excess of 100 pg/g are not unusual. For example,
Leatherland and Burton (1974) reported levels of 220 pg/g in the starfish, Asterias rubens,
and Thompson and Paton (1979) found 171 ug/g in the muscle tissue of sea cucumber,
Molpadia intermedia.  Eisler (1981) suggests that the high zinc concenirations among
echinoderms reflect their inability to regulate tissue jevels of this metal. Thus, they could well
prove 10 be useful indicators of zinc contaminated waters.

Burdon-Jones and Denton (1984a) looked at zinc in the body wall of the sea cucumber,
Stichopus variegatus, from Lizard Island, Orpheus Island and Heron Island on the Great
Barrier Reef, and reported mean levels 7.4, 9.0 and 6.7 ug/g respectively. Zinc levels in
sediments at Orpheus Island were ~16 pg/g compared with ~0.5 ng/g at the other two
collection sites. As sea cucumbers derive their metal Joad predominantly from ingested
sediments, it was reasoned that specimens from Orpheus Istand would contain the highest
tissue concentrations of zinc assuming they lacked any regulatory capacity for this element.
However, the fact that there was no significant difference between data sets suggested
otherwise.

In the current work, we noticed very little inter-site difference in the body wall zinc
concentrations of both sea cucumber species analyzed (Table 11). This finding supports the
argument for metabolic regulation for zinc, at least in this tissue. Levels showed little
variability and ranged from 8.33-18.0 pg/g in Bohadschia argus, and 12.6-212 ug/g in
Holothuria atra. Concentrations in the hemal system were appreciably higher, particularly in
specimens from the Hotel Wharf and Commercial Port area of Apra Harbor, where
sedimentary zinc levels are known 10 be relatively high. This implies that the hemal system
would be a better candidate tissue for determining zinc abundance in the marine environment.

1.10.5 Zn in Mollusks:

It is evident from the literature that trace metal levels in bivalves are subject to considerable
inter-specific variation and, in this regard, zinc is probably affected most. Oysters rank
among the greatest accumulators of zinc and levels reported in the literature range from less
than 100 pg/g in clean waters to 100,000 pg/g in areas impacted by metal mining, smelting, or
refining activities (Eisler 1981).

Levels in oysters from harbor locations typically range between 1,000-10,000 pg/g (Table 3).
Hence, the high levels of zinc found in oysters during the present study are to be expected
given the nature of the environment from which they were collected.

The utility of oysters as biomonitors of zinc and copper abundance in marine and estuarine
environments is unequivocally established (Phillips 1980). For this reason, they rank among
the most popular choice of sentinel species for pollution monitoring programs. Burdon-Jones
et al. (1977) examined zine levels in Saccostrea amasa from Townsville Harbor and reported
mean monthly levels of 1,916-9,073 pg/g. The same species from an offshore location on the
Great Barrier Reef contained much lower levels of 54.4-130 ng/g (Burdon Jones and Denton
1984a). In both cases, tissue concentrations of zinc were between 10° and 10° times higher
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1.10.7 Zn in Ascidigns:

Zinc concentrations in ascidians are of the same order as those found in many other sofi-
bodied invertebrate groups. Levels reported by Papadopoulu and Kanias (1977) for two
species of ascidians from the Mediterranean ranged from 100-180 pg/g. Levels recorded here
for Apra Harbor specimens were somewhat lower, extending from 15.2-95.8 pg/g. No
obvious parallels were apparent with zinc levels in sediments.

Zinc levels in teleosts are generally lower than in most invertebrate groups and probably
reflect their ability to regulate tissue levels of this metal within certain limits (Phillips 1980).
It is, therefore, not surprising that during the present investigation there was no consistent
evidence to suggest zinc levels varied between trophic jevels, or between harbor sites.
However, the data did show that inter-specific variations of zinc in liver tissue frequently span
an order of magnitude or more. 1t was also evident that hepatic zinc concentrations generally
bore no relationship to levels present in muscle tissue.

Zinc concentrations in axial muscle showed relatively little inter- or intra-specific variation
and ranged from 8.4-48.9 ng/g for all samples. However, out of the 74 specimens analyzed,
only 15% had concentrations above 20 pg/g (mostly from Apra Harbor). The great majority
of samples yielded values between 10 and 20 pg/g. Denton and Burdon-Jones (1986¢) noted
similar findings with fish from the Great Barrier Reef In their study, axial muscle
concentrations of zinc ranged from 4.3-41.8 pg/g in 190 individuals, representing 50 different
gpecies. However, zinc concentrations exceeded 20 ug/g in only 8 % of samples analyzed
while 16% gave values of less than 10 pg/g.

On a fresh weight basis, the results of the current study also compare favorably with those

reported by Powell et al. (1981) for 8 tropical marine species from Bougainville Island, Papua
New Guinea.

As mentioned above, it is now generally believed that fish actively regulate zinc
concentrations in their muscle tissue (Cross ef al. 1973, Bryan 1976) and, as a result, do not
reflect changes in ambient available changes of this element in their environment (Phillips
1980). Therefore, it is noteworthy that generally higher zinc concentration ranges to those
presented here have been reported in species from relatively polluted areas of the world
(Halcrow et al. Eustace 1974, Sims and Presley 1976, Plaskett and Potter 1979) which infers
that regulation of this element may not be complete.

1.10.9 Concluding Remarks:

Clear indications of mild to moderate zinc-enrichment of the biota are evident at all four
harbor locations. Although contamination by this metal is widespread within Apra Harbor, it
is predominantly confined to the inner section of Agana Boat Basin, the refueling station at
Agat Marina, and adjacent to the Cocos Island ferry terminal at Merizo Pier.
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2. PCBs IN HARBOR BIOTA

PCBs consist of 209 theoretically possible congeners having different toxic and biologic
responses. Approximately half this number accounts for almost all of the environmental
contamination attributable to PCBs. Based on potential toxicity, environmental prevalence
and abundance in animal tissues, the number of environmentally threatening PCBs reduces to
about 36 (McFarland and Clarke 1989).

The aqueous solubilities of individual PCBs range from 1-5 mg/l for monochlorobiphenyls to
low-pg/l, or less, for the more highly chlorinated congeners (Opperhuizen ef al. 1988, Patil
1991). However, it is most unlikely that these solubility limits would ever be approached in
natural waters, even in highly contaminated environments, because of the hydrophobic nature
of PCBs coupled with their high affinity for suspended particulates, sediments, and biota.

PCBs are ubiquitous contaminants and occur in all environmental compartments. Levels in
open ocean waters are highly variable with reported levels ranging from <2-6 pg/l in the
Arciic Ocean (Hargrave ef al. 1992), up to 590 pg/l in the northwestern Pacific Ocean (Tanabe
ef al, 1984). PCB concentrations in marine coastal waters that are distanced from potential
sources of local contamination are normally in the low ng/t range (Niimi 1996). The highest
waterborne concentrations of PCB occur near point-source discharges, with concentrations in
the range of 50-500 ng/! (Tanabe et al. 1989, El-Gendy ef al. 1991).

World baseline levels for PCBs in clean coastal sediments are <1 ng/g whereas, in heavily
contaminated environments, levels as high as 61,000 ng/g have been reported (Nisbet 1976).
PCB concentrations (based on a 20-congener calibration standard) in Guam harbor sediments
were previously found to range from <1 ng/g at Agat Marina, up 1o 549 ng/g at the western
end of Commercial Port, in Apra Harbor. Localized pockets of PCB contamination were also
encountered here, in sediments from Hotel Wharf (162 ng/g) and Dry Dock Tsland (153 ng/g).
Long et al. (1995) estimated that adverse biological effects frequently occur in biota exposed
to sedimentary PCB levels exceeding 180 ng/g. Thus, there are discrete areas of PCB
contamination in Apra Harbor sediments that are of environmental concern.

Outside the Apra Harbor area, the highest PCB concentration was found in sediments from the
inner Agana Boat Basin area (64 ng/g). Elsewhere, levels encountered were mostly below 10
ng/g (Denton et al. 1997).

Tables 16-22 summarize the PCB data found in biota during the present study. Each table
presents concentrations found at 9 levels of chlorination (PCB homologues Cl;-Cl1o) within
each group of organisms. These values were derived using the 20-congener standard mix
described earlier, and were summed to provide total congener estimates (220PCB). If no
congeners were detected then all estimates were set to z€r0.

Where possible, the data are discussed below with reference to PCB levels found in the same
or related species from elsewhere in the world. It is noteworthy that a large proportion of the
published information centers on edible species of mollusk, crustaceans, and fish. Very little
information of this nature exists for the other invertebrate groups considered here. As a
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Residue profiles for Dysidea are shown in Fig. 6 and are dominated by Cls-Cly homologues.
This isomeric group is found in high proportions in the commercial PCB mixture Aroclor
1254 (Hutzinger ef al. 1974, Brownawell and Farrington 1986). The data therefore implies
the existence of one or more point sources of PCB in waters bounded by the Shell Fox-1 Fuel
Pier (site ¢), Commercial Port (side d), and Echo Wharf (site f). The data obtained earlier
with sediments, certainly support this conclusion (Denton ef al. 1997).

5,,PCB concentrations in all other species of sponge examined, although generally high, were
less than 100 ng/g (Table 17). No comparable data for sponges were found in the literature at
the time of writing this report. Clearly, sponges are very responsive to ambient changes in
PCB concentrations and further work should be directed towards their use as bicindicators of
these compounds.

2.3 PCBs in Soft Corals:

Soft corals, like sponges, are rich in triglycerides and also demonstrate a high accumulation
capacity for PCBs. ZoPCB concentrations in Simularia sp. ranged from a low of 3.72 ng/g, at
Agat Marina, to a high of 4,103 ng/g at site ¢, in Apra Harbor. The latter value confirms the
occurrence of elevated PCB concentrations in the vicinity of the Shell Fox-1 Fuel Pier.
Residues in Sinularia sp. from this site were dominated by the mid-range homologues
common to Aroclor 1254 (Fig. 7). No comparable data for soft corals were found in the
literature at the time of writing this report.

2.4 PCBs in Sea Cucumbers:

The current work revealed that PCBs in sea cucumbers are tissue dependent and appreciably
more concentrated in the hemal system than the body wall muscle (Table 18). In Bohadschia
argus, for example, ZxPCB concentrations ranged from 0.03-12.8 ng/g in muscle, compared
with 0.28-66.5 ng/g in the hemal system. Overall, levels in both tissues were highest in the
Apra Harbor specimens and were dominated by Cla-Clz homologues (Fig. 8). Comparable
ranges were determined in Holothuria atra, apart from a very high value of 1279 ng/g in the
hemal system of one specimen from Merizo Pier.

Very little attention has been focused on echinoderms as indicators of PCBs. Everaarts e? al.
(1998) measured levels of 7 chlorobiphenyls in an unnamed brittle star, from the east coast of
Africa, and reported Z/PCB concentrations of 0.07-0.15 ng/g. Bright ef al. (1995) considered
several Arctic invertebrates to monitor 47 PCB congeners in biota from Cambridge Bay,
NWT. Apparently the bay received local sources of PCBs in runoff from contaminated
terrestrial sites. Z47PCB concentrations measured in sea urchins by these authors ranged from

<1.0-210 ng/g.

Hope and co-workers looked at PCBs in Bohadschia obesus and Holothuria atra from
Midway Atoll and are the only other investigators known to have examined PCBs in sea
cucumbers from the Pacific. ZzPCB estimates derived from their data were 183 and 9.36
ng/g dry weight (~37 and 2 ng/g on a wet weight basis) for each species respectively (Hope ef
al. in press). Allowing for the fact that analysis was conducted on whole specimens, these
values compare reasonably well with those determined by us during the current study.
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Figure 10. Polychlorinated Biphenyls in Fish from Apra Harbor
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Figure 7. Polychlorinated Biphenyls in Soft Corals from Apra Harbot
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Several workers have explored the potential of fish liver as an indicator tissue for PCBs
(Marthinsen et al. 1991, Pereira ef al. 1994, and Brown et al. 1998). For this reason, the livers
of 20 fish were analyzed during the present investigation. In all cases, £,0PCB concentrations
greatly exceeded those found in axial muscle (Table 22). Such differences between the two
tissues simply reflect the fiver’s higher lipid content (>50% in some cases), which greatly
enhances its capacity to act as a reservoir for refractory, lipophilic compounds like PCBs.

During the course of the current work, hepatic Z20PCB concentrations exceeding 10,000 ng/g
were found in two fish from Apra Harbor. The first fish, Caranx melampygus, a relatively
large carnivorous species from Dry Dock Island (site ), contained 17,009 ng/g in its liver. A
slightly lower value of 11,346 ng/g was measured in Monodacitylus argentius, a small
omnivorous species captured at the western end of Commercial Port (site d). Chromatograms
from both fish were not too far removed from the commercial PCB mixture, Aroclor 1260, as
shown in Figs. 9-10. Tt is noteworthy that PCB profiles resembling this Aroclor were
previously identified in sediments from the Dry Dock Island area (Denton ef al. 1997).

In sharp contrast to the two fish described above, C. melampygus taken from the Hotel Wharf
area contained PCB residues in its axial muscle that were proportionately similar to Aroclor
1254. Once again, attention is drawn to the fact that we previously observed a PCB signature
similar to that of Aroclor 1254 in sediments from around this area. The axial muscle
chromatograms of C. melampygus from both sites are presented together in Fig. 11 for

comparative purposes.

Comparably high hepatic PCB concentrations have been reported by others and, in all
instances, were related to elevated environmental levels of these compounds. For example
Marthinsen ef al. (1991) found 6-8,320 ng/g in two fish species from the mouth of the
Glomma, the largest river in Norway. Similarly, levels exceeding 10,000 ng/g dry weight
were reported by Brown et al. (1998) for livers of three species of fish from various locations

along the U.S. Pacific coast.

2.9 Concluding Remarks:
it is evident that the PCB-enrichment noted earlier in

From the preceding discussions,
sediments from certain locations in Apra Harbor is also reflected in the biota. However, a

comparative analysis of the data with levels found in similar and related species elsewhere,
generally indicates only mild enrichment extending to moderate, in certain species at localized

sites in and around the Commercial Port and Dry Dock Island areas.

Tt is clear from the literature and from the current work, that PCB concentrations in aquatic
organisms can vary by up to a factor of 10° depending upon the species, the location and the
tissue examined. The wide range of values reported here, especially for organisms from the
same site, largely reflects inter-specific differences in lipid content. Species with the highest
lipid content can be expected to accumulate the largest amounts of PCBs. Thus, species
differences in bioaccumulation capacities appear considerable, when PCB concentrations are
determined on wet weight basis; however when based on lipid weights they are far less
variable (Phillips 1986a). Future monitoring programs are, therefore, recommended to
express the data on both a fresh weight and lipid weight basis.
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2.5 PCBs in Mollusk:

Next to fish, bivalve mollusks are the most commonly used indicators of PCBs in aquatic
environments (Phillips 1980). Both the U.S. National Status and Trends (NS&T) program
and the International ‘Mussel Watch’ (IMW) program center on the use of mussels and
oysters for monitoring PCBs and other contaminants in aquatic environments.

—_—

j The NS&T program collects bivalves annually from numerous sites on the Atlantic, Pacific
] and Gulf coasts of the US, including Alaska, the Hawaiian Islands, and Puerto Rico.
According to a recent report by Sericano et al. (1995), PCBs have been detected in all oyster
samples since the program began in 1986. Average concentrations up to 1993, ranged from
100-630 ng/g dry weight at 15 sites, and from 10-100 ng/g dry weight at all the rest. Total
PCB levels exceeding 1,000 ng/g dry weight have been reported in oysters from two MW
sampling locations in South America (Sericano e? al. 1995). It should be mentioned here, that
the NS&T criteria for estimating ‘total’ PCB is twice the sum of all detectable
chlorobiphenyls of an 18-congener calibration standard (QO’Connor 1998).

In the present study, ZxPCB concentrations in oysters ranged from a low 1-2 ng/g at Agat
Marina and Merizo Pier, to a high of 47 ng/g in one specimen from Dry Dock Tsland (site €) in
Apra Harbor (Table 19). ZaPCB levels of 10-15 ng/g were present in pooled oyster
composites from beneath the Shell Fox-1 Fuel Pier (site ¢) as well as from Agana Boat Basin.
Concentration differences between oyster composites revealed within-site variability factors
of 3.2, 1.4 and 6.5 at Apra Harbor sites a, ¢, and . Geometric mean T,PCB concentrations in
oysters at these sites were calculated at 4.6, 39.8, and 7.42 ng/g respectively. The relatively
high levels determined in oysters from Dry Dock Island (site €) support our easlier findings of
PCB enrichment in the sediments from araund this area (Denton et al. 1997).

No comparative data were found for PCBs in chamids or spondylids outside of this study.
From the limited data presented here, it appears that chamids have a lower affinity for PCBs
than oysters. In contrast, spondylids and oysters seem to demonstrate similar accumulation
capacities for these compounds and both highlight PCB-enrichment in the Dry Dock Island
area (Table 20).

Limited data exists for PCBs in cephalopods. Kawano ef al. (1986) determined up to 17 ng/g
(as Aroclor 1254) in whole squid from the Pacific Ocean and Bering Sea, while Everaarts ef
al. (1998) reported a mean $,PCB concentration of 3.0 ng/g for cuttlefish (Sepia sp.) from east
African waters. In an earlier study, Monod et al. (1995) examined 6 chlorobiphenyls in
octopus from Saint Paul and Amsterdam Islands, in the central southern Indian Ocean, and
reported low ZsPCB concentrations of 8.1-19.2 ng/g dry weight. This is about 2-4 ng/g wet
weight, assuming octopus is 80% water. The Z20PCB concentration determined in tentacles of
ociopus from Apra Harbor during the current siudy was 8.78 ng/g (Table 21). Interestingly,
the 6 congeners that Monod and co-workers focused on accounted for almost 70% of total

residues quantified.

The very high Z20PCB levels in the liver of the Apra Harbor octopus (1271 ng/g) no doubt
reflects the high fat content of this tissue and, hence, its ability to store relatively high
concentrations of lipophilic xenobiotics like PCBs.
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3. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) IN HARBOR BIOTA

PAHs are a group of aromatic hydrocarbons made up of two or more fused benzene rings.
They are released into the environment from both natural and anthropogenic sources, although
the latter are far more important in terms of global contributions to the environment. True
PAHSs contain only hydrogen and carbon atoms and are differentiated here from polycyclic
aromatic compounds that contain other atoms such as nitrogen, oxygen or sulfur (McElroy et
al. 1989).

Primary anthropogenic sources of PAHs include the burning of fossil fuels (pyrogenic PAHSs)
and accidental petroleum discharges (petrogenic PAHs). The widespread occurrence of PAHs
in the environment is largely a result of the former source, i.¢., the incomplete combustion of
coal, oil, petroleum and wood (Jacobs 1995). Pyrogenic PAHs are predominantly
unsubstituted and often referred to as ‘pure’ or ‘parent’ compounds. They consist largely of
the higher molecular weight, 4-6 ring compounds. In contrast, petrogenic PAHs are
predominantly low molecular weight congeners and are commonly characterized by the
presence of alkylated derivatives of parent compounds with 2-4 aromatic rings (Law and
Biscaya 1994).

Ecotoxicological interest in PAHs has grown in recent years, particularly in light of fairly
strong evidence linking them with liver neoplasms and other abnormalities in demersal fish
species (Malins ef al. 1984, 1988). Several of the higher molecular weight compounds are
metabolically transformed in many organisms, into potent carcinogens, teratogens and/or
genotoxic metabolites (Cerniglia and Heitkamp 1989).

PAHs are relatively insoluble in seawater and rapidly become associated with suspended
sediments upon entry into the marine environment. Consequently, in nearshore waters most
PAHs are deposited in bottom sediments fairly close to their point of entry (Phillips ef al
1992). Agueous solubilities generally decrease with increased molecular weight and range
from around 30 mg/l for naphthalene to about 0.3 pg/l for benzo(ghi)perylene at 25°C
(Readman et al. 1982, Eisler 1987). PAHs with more than seven aromatic rings are virtually
insoluble, have extremely limited bioclogical availability and, consequently, are of limited
environmental significance (Neff 1979).

Concentrations of individual PAHs in the open ocean are usually in the sub-nanogram per liter
range. Law ef al. (1997) measured 15 unsubstituted PAHs in seawater from around England
and reported total quantifiable concentrations of <1-15 ng/l in offshore samples. In coastal
and estuarine waters, levels were between 2-3 orders of magnitude higher again. Dissolved
PAH fractions were generally dominated by the more soluble, low molecular weight
congeners, while the heavier compounds tended to predominate in the particulate fraction.

Total PAH levels in uncontaminated sediments are generally less than 5 ng/g (Pierce ef al
1986, Van Fleet et al. 1986) although background levels of 10-15 ng/g have been reported for
some unimpacted, deep-sea sedimenis (Hites ef al. 1980). PAH concentrations in sediments
from the Great Barrier Reef, Australia, were always <0.8 ng/g, except in small areas close to
sites frequently visited by powerboats, in those instances, total PAH levels exceeded 13.4
ug/g (Smith ef al. 1985).
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In highly contaminated waters, notably estuaries, ports and harbors, sedimentary PAHs may
exceed concentrations of 1,000 pg/g. Sediments collected near a coking facility in Nova
Scotia in 1980, for example, contained total PAH levels of up to 2,830 ug/g (Eisler 1987). An
all time high of 6,000 pg/g was reported for sediments from the creosote-contaminated waters
of Bagle Harbor in Puget Sound (Swartz ef al. 1989).

We previously measured 16 individual PAHs in Guam harbor sediments and found total
quantifiable levels ranging from non-detectable to 10.7 pg/g. According to the United
Nations Environment Program (UNEP 1994), total PAH levels of ~0.5 ug/g constitute a
moderate degree of contamination whereas levels exceeding 10 pg/g are classified as highly
contaminated. In our study, only samples from Hotel Wharf and the Shell Fox-1 Fuel Pier in
Apra Harbor fell into the latter category. Moderate contamination was encountered around
the Commercial Port and Dry Dock Island areas. All other Apra Harbor sites were classified
as either lightly contaminated or clean (Denton ez al. 1997).

According to Long ef al. (1995), sediments with total PAH concentrations of 4 pg/g, or less,
pose minimal risk of adverse biological effects to resident biota. From this it would appear
that levels encountered in and around Hotel Wharf and the Shell Fox-1 Fuel Pier in Apra
Harbor are also significant from an environmental toxicity standpoint.

In the present study, we determined the same 16 PAHs in biotic representatives from several
sites, including those mentioned above. The findings of the study are summarized in Tables
23-29, together with the sum totals for all detectable residues (2P AH) for each organism or
tissue analyzed. Non-detectable residues were set to zero during the summing process.

The data are briefly reviewed in the context of previously published information from
elsewhere. Unfortunately, little or no comparative data exists for several of the invertebrate
groups considered here. Nevertheless, an overall review of the literature indicates that total
PAH concentration in excess of 100 ug/g dry weight are not unusual in aquatic organisms
living close to point sources of PAH, such as petroleum drilling activities, oil spills or chronic
fuel leakages. In contrast, organisms from remote or relatively unpoliuted areas generally
contain levels in the low ng/g range (Onuska 1989). Reported values for individual PAHs
range from ~0.01-5,000 ng/g dry weight (McElroy e al. 1989). In general, the highest tissue
concentrations are displayed by organisms with high lipid content, poor PAH metabolizing
capabilities, and distribution patterns coincident with the location of PAH sources (Kennish
1998).

All referenced data included in the following discussions are expressed on a wet weight basis
unless indicated otherwise.

3.1 PAHs in Algae:

Algae rapidly accumulate dissolved PAHs from the water column, attaining steady state
concentrations usually within 24 h (Neff 1979). Bioconcentration factors of 107, or more, are
not uncommon and reflect this group’s inability to effectively metabolize PAHs (Eisler 1987),
Experimental evidence suggests that uptake is related more to adsorption rather than
absorption processes (Leversee ef al. 1981). As a result, depuration is primarily the result of
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slow partitioning from surface adsorption sites back into the water column once ambient PAH
levels subside (Kauss ef al. 1973, Soto et al. 1975).

Algae are particularly useful indicators of petroleum spillages. Such events are typically
characterized by an abundance of the more water soluble, low molecular weight PAHs in the
water column. These are highly available to algae and tend to dominate tissue profiles for
some time after the spill has passed (Farrington et al. 1983, Jones et al. 1986, and Murray ef
al. 1991). In contrast, the more hydrophobic, high molecular weight members are rapidly
scavenged from solution by suspended particles and their biological availability is
considerably reduced (Readman ef al. 1984).

In the current study, only very low levels of some of the higher molecular weight PAHs were
detected in Padina sp. from Commercial Port (site d), Dry Dock Island (site €), and Echo
Wharf (site f). ZisPAH concentrations ranged from 30-41 ng/g and are presumably a
reflection of pyrogenic PAH contributions from the engine exhaust streams of watercraft in
the area. The absence of detectable 2- and 3-ring PAHs indicated that significant fuel spills
had not occurred at these sites in the recent past. At all other sites, levels of all PAHs
examined were below the limits of analytical detection (Table 23).

Few studies have focused on the PAH content of algae. Harrison ef al. (1975) published a
maximum value of 60 ng/g for total PAHs in marine algae from Greenland. This value is not
too far removed from the maximum 3,6PAH concentration reported here for Padina sp. In an
carlier series of studies, Mallet and coworkers looked at benzo(a)pyrene levels in marine algae
from Greenland and French Mediterranean coastal waters and found levels ranging from
undetectable to 60 ng/g dry weight (Mallet 1961, Mallet ef al. 1963, Perdriau 1964). The
highest value reported by these researchers translates to ~15 ng/g on a wet weight basis and is
approximately half the maximum benzo(a)pyrene concentration determined in Padina sp.
during the present study.

Levels of this particular PAH are usually no more than 1 or 2 ng/g in marine organisms from
remote locations, In large harbors and marinas, they are typically higher and are frequently
associated with creosoted wharf pilings, domestic and industrial sewage discharges, shipping
wastes, crude oil and refined petroleum spills, engine exhausts, and stormwater runoff from
sealed roads and other bituminous surfaces (Neff 1979).

3.2 PAHSs in Sponges:
3 .PAH concentrations in the sponges analyzed were at least an order of magnitude higher

than in Pading sp. Presumably, this reflects the relatively high lipid content of the various
representatives looked at within this group. - The fact that sponges ‘have very limited PAH
metabolizing capabilities may also be a contributing factor here (Kurelec e al. 1985).

PAH profiles were largely dominated by 4-6 ring compounds of pyrogenic origin (Table 24).
Low levels of the 3-ringed PAH, anthracene, were detected in several species of sponge from
Apra Harbor. However, this low molecular weight congener is a product of combustion and is
not present in petroleum (Hellou 1996). The dominance of pyrogenic PAHS in the area is,
therefore, confirmed and further supported by the absence of other low molecular weight
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congeners, apart from phenanthrene, a 3-ringed compound and common component of both
petrogenic and pyrogenic PAHs (Hellou 1996).

We were unable to locate any comparative data for sponges from elsewhere at the time of
compiling this report.

3.3 PAHs in Corals:

21sPAH concentrations in the soft coral Sinularia sp. were of the same order as determined in
Padina sp., apart from one sample taken from underneath the Shell Fox-1 Fuel Pier, in Apra
Harbor (site ¢). This particular specimen had a total quantifiable PAH concentration of 117
ng/g. Its PAH profiles were dominated by anthracene, fluorene and chrysene, three common
constituents of fossil fuel combustion (Table 24).

No comparative PAH data was found for soft corals from other parts of the world.

3.4 PAHs in Sea Cucumbers:
A limited number of PAHs were detected in sea cucumbers from Apra Harbor and the Merizo

Pier area, although there was no consistency in residue patterns between sites. Total
quantifiable concentrations were relatively low and ranged from 26-83 ng/g (Table 25).

Agquatic organisms can acquire PAHs from water, food and sediments. Direct uptake from
water is generally considered to be more efficient than from food or sediment. In fact,
sediment bound PAHs have only limited biological availability. Consequently, benthic
organisms, like sea cucumbers, rarely contain higher levels of PAHs than the sediment in their
immediate surroundings, even in highly polluted waters (Neff 1979). Moreover, there is now
evidence to suggest that higher invertebrates like echinoderms, arthropods and annelids, can
metabolize PAHs, whereas lower invertebrates like coelenterates and sponges generally
cannot (James 1989). The fact that we were unable to detect any PAHs in the majority of sea
cucumbers analyzed is, therefore, not surprising.

Remarkably little attention has been directed towards the PAH assimilating capacity of
echinoderms considering the intimate contact these organisms have with marine sediments.
Mallet et al. (1963) was unable to detect benzo(a)pyrene in an unidentified sea cucumber
from the west coast of Greenland. However, they reported a maximum value of 126 ng/g dry
weight for this PAH in an unidentified starfish from the North Sea coast of France. In the
present study detectable levels of benzo(a)pyrene were only found in the hemal system of
Holothuria atra from the Port Authority Beach area. In this particular instance a value of 58
ng/g was recorded. This equates to ~387 ng/g when recalculated on a dry weight basis and is
relatively high for an aquatic organism.

3.5 PAHs in Mollusks: _
From a PAH monitoring standpoint, bivalve mollusks have received far more attention than

any other invertebrate group. Their popularity stems from the fact that they can rapidly
accumulate PAHs and have little capacity for PAH metabolism (McElroy et al. 1989, Hellon
1996). Moreover, they have the advantage of being sessile and attached;, hence tissue
concentrations are a reflection of levels in their immediate surroundings. Mussels and oysters
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are the most commonly used indicator species in PAH surveillance studies and recent data
from the NS&T and IMW ‘Mussel Watch® programs indicates that ZisPAH (and Z,0PCB)
levels in both bivalves from the same sites agree within a factor of two (O’Connor 1992).

O’Connor (1998) recently summarized the NS&T 1988-96 ‘“Mussel Watch’ data for 18-24
PAH congeners in oysters and mussels from 287 U.S. coastal sites. Annual median total PAH
concentrations ranged from 62-503 ng/g dry weight over the nine-year period.

Eartier, Sericiano et a/. (1995) produced a more comprehensive breakdown of the NS&T and
IMW data for bivalves from the North, Central and South American coasts, between 1986-
1993. It transpired that samples from five out of 51 NS&T sites from the Guif of Mexico
contained £,3sPAH concentrations between 1,100 and 3,700 ng/g dry weight. A further 18
sites yielded samples with levels ranging between 100-1,000 ng/g dry weight. Bivalves from
all other sites in this region contained total PAH levels of <100 ng/g dry weight. PAH levels
in the bivalves from 71 out of 76 IMW sites in Central and South America also fell within the
latter range. The highest value of 1600 ng/g dry weight was measured in samples collected
near a local port in Punta Arenas, Chile.

In the present investigation, PAHs were detected in 53% of oyster samples analyzed (Table
26). Total quantifiable levels ranged from 15-78 ng/g and were highest in samples collected
from underneath the Shell Fox-1 Fuel Pier (site ¢). Phenanthrene and fluoranthene were the
most commonly detected congeners. Benzo(a)pyrene was identified only once, in oysters
from Agana Boat Basin, and at a relatively low concentration of 10 ng/g.

To permit comparisons with the NS&T and IMW data, the current findings were recalculated
on a dry weight basis and ranged from ~100-520 ng/g. These values are very close to the
annual median ranges for U.S. coastal waters cited above and are well within the range of
values determined by both programs.

Total PAH levels in oysters from clean environments are usually less than 10 ng/g on a fresh
weight basis. This is inferred from the work of Pendoley (1992) who examined 16 parent
PAHs and 8 alkalyted derivatives of naphthalene and phenanthrene in oysters from a remote
offshore location in Western Australia, Total quantifiable levels of pure and alkylated PAHs
were 4.6 and 135 ng/g respectively and were classed as being representative of an unpolluted
environment,

In a more recent investigation, Michel and Zengel (1998) measured 14 pure and 20 alkylated
PAHs in the oysters from Acajutla, El Salvador, following two oil spill incidences. They
reported total PAH concentrations ranging from a low of 37 ng/g dry weight (~6 ng/g wet
weight) in specimens from clean areas, up to 18,000 ng/g dry weight at the most heavily
impacted sites. Residues were primarily of petrogenic origin in all instances.

Clearly then, while PAH levels in oysters from Guam harbors are not exactly representative of

pristine conditions, they fall a long way short of those encountered in bivalves from heavily
polluted waters (see Table 7).

- 107 -




No comparative data exists to evaluate the PAH levels found in chamids and spondylids
during the present investigation (Table 27). The limited data we have suggests that their
affinities for PAHs compare reasonably well with those of oysters. However, it is well known
that different species of mollusks can take up different types and levels of PAHs from their
environment (Boehm et al. 1982).

The highest PAH levels recorded here for chamids were in specimens from the western end of
Commercial Port (site d). At this site, total quantifiable levels ranged from 63-783 ng/g with
an overall geometric mean value of 235 ng/g. Such high sample variability may reflect
individual differences in size and/or physiological condition related to gonad development and
spawning. These variables were not accounted for during this preliminary study.

Tissue PAH profiles in chamids from site d were dominated by phenanthrene, anthracene,
fluoranthene, chrysene, benzo(k)fluoranthene and benzo(a)pyrene. The absence of the low
molecular weight homologues, in addition to the fact that phenanthrene/anthracene ratios were
less than 10, indicates that residues were primarily of pyrolytic origin (Benlahcen ef al. 1997).

Although numerous studies have focused on PAH levels in bivalves, we were unable to locate
any that dealt specifically with cephalopods. Suffice to say, the single octopus taken from
Apra Harbor during the present study contained no quantifiable levels of PAHs in either tissue
analyzed (Table 28.). We therefore suspect that the appropriate metabolic processes are
sufficiently well developed in this organism to maintain PAHs at very low levels. The squid,
llex illecebrosus, is certainly able to rapidly transform PAHs into polar metabolites (Payne
1976), but whether all cephalopod mollusks can do the same remains to be established.

3.6 PAHSs in Crustaceans:

Crustaceans generally show better PAH metabolizing capabilities than mollusks and other
lower invertebrates (James 1989, Kennish 1998). However, excretion is relatively slow and
s0 tissue residues tend to build up when ambient concentrations are elevated. The work of
Sirota et al. (1983) admirably demonstrates this. These researchers measured total PAHSs in
the American lobster, Homarus americanus, living in the vicinity of the Nova Scotia coking
facility mentioned earlier. It will be recalled that sedimentary PAH levels peaked at 2,830
ug/g. Lobsters exposed to such unusuvally high concentrations accumulated levels ranging
from 1,91-2.67 pg/g and 57.3-88.1 pg/g in their tail muscle and hepatopancreas respectively.
Levels in control specimens taken some distance from the facility were 1-2 orders of
magnitude lower.

Total PAH levels reported for crustaceans from other areas are highly variable and range from
<100->6,000 ng/g dry weight in whole specimens (see Tabie 7). Among the highest levels
encountered in edible tissue was a value of 1600 ng/g for the rock crab, Carncer irroratus from
the New York Bight area (Humason and Gadbois 1982).

In view of the above, it is significant to note that we were unable to detect any PAH residues
in the tail muscle of the stomatopod, Gonodactylus sp. from Apra Harbor (Table 28). This
burrowing predatory species might be expected to reflect the PAH loading of the bottom
sediments in which it lives, although sediment-sorbed PAHs have fimited bioavailability as
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mentioned earlier. Nevertheless, the stark absence of PAHSs in the tail muscle of this
specimen deserves further investigation to determine possible links between habitat and/or
effective PAH metabolism.

3.7_PAHs in Ascidians:
Almost nothing is known about the PAH accumulation characteristics of tunicates. What

limited data there is suggests that certain species can metabolize these compounds while
others clearly cannot (Kurelec ef al 1977). In the present study, we were unable to detect any
PAH residues in the ascidian analyzed, apart from very low levels of anthracene (3 ng/g) and
benzo(k)fluoranthene (9 ng/g) in Rhopalaea sp. from site d. The fact that ascidians are
approximately 95% water could possibly account for their apparent lack of sensitivity to
environmental PAHs although metabotic process cannot be overruled.

3.8 PAHs in Fish:

Fish have a well-developed enzyme system that rapidly transforms PAHs into water-soluble
metabolites, Consequently, they accumulate these contaminants only when exposed to
heavily contaminated environments or chronic leakages (see Table 7). Even then, they are
able to depurate 99% of all accumulated PAHs within 24 h of uptake, once returned to clean
water (Varanasi et al. 1989). For these reasons, PAH levels in fish axial muscie are
commonly close to or below the limits of analytical detection, even in moderately polluted
waters.

The resuits of the present survey are, therefore, encouraging. Out of 75 fish analyzed,
quantifiable levels of PAHs were detected in the axial muscle of only 10 specimens. Levels
ranged from 4-64 ng/g with a median value of 20 ng/g. Tissue PAH profiles varied between
species but, in general, were dominated by phenanthrene, followed in decreasing frequency of
detection by: benzo(g,h,i)perylene > dibenz(a, #)anthracene > anthracene > acenaphthene and
fluorene (Table 29). This ranking suggests exposure t0 PAHs of predominantly pyrogenic
origin, with minor contribution from petrogenic sources. PAHs were not detected in any of
the fish livers examined.

3.9 Concludin arks:

This preliminary survey generally indicates low level movement of PAHs into the biota of
each harbor studied. The biota from Apra Harbor are particularly clean when compared with
tevels found in related species from similar sized ports elsewhere in the world. This is
somewhat surprising considering the intensity of military and commercial shipping activities
that go on here on a day-to-day basis. No doubt, current harbor policies aimed at preventing
petroleum spillage and oil/water discharges from boats and ships in the area have much to do
with this. Also, PAH degradation and volatilization rates are higher here compared with
cooler regions, and, in all probability, is paralieled by higher PAH turnover rates in the local
biota. Thus, the impact of a small spill on tissue PAH residues will very likely be short-lived,
as will the telltale PAH signatures in the bioindicators of choice, once conditions return to
normal.
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GENERAL CONCLUSIONS

This study though preliminary in nature, has produced a considerable bank of data upon which
planners, regulators, water quality managers, and researchers can draw upon when dealing
with related environmental problems. It clearly identifies areas of contaminant enrichment
within biotic components of Guam’s harbor environments, and provides a useful database
with which future levels can be compared and evaluated. In addition, the study has identified
a number of potentially useful bioindicator organisms for future monitoring purposes, and has
assessed their current contamination status by reference to levels found in similar and related
species from other parts of the world. It is hoped that the study will serve as 2 catalyst for
more detailed investigations of spatial and temporal trends in contaminant levels for ali of
Guam’s nearshore waters, and in representatives of the biotic resources that inhabit them.
Such data is imperative if we are to achieve sustainability of our fragile coastal ecosystems
and preserve the integrity of species frequently harvested for human consumption. To this
end, some final comments are directed towards bioindicator use and the implementation of a
suitable monitoring program for our coastal waters. The public health considerations relating
to levels of certain contaminants determined in edible species during the course of this
investigation are also briefly addressed together with recommendations for future work.

1. THE IMPLEMENTATION OF A MARINE MONITORING PROGRAM USING BIOLOGICAL INDICATORS:

SOME PRELIMINARY CONSIDERATIONS _
The use of aquatic biota to monitor pollutant levels in aquatic environments started about 40

years ago with investigations into the abundance of radionuclides in the environment (e.g.,
Seymour 1966). Over the last two decades, the technique has been adapted to the study of
stable heavy metals, persistent organochlorines like DDT and PCBs, and more recently,
hydrocarbons. It is during this latter period that we have largely come to grips with many of
the problems that rendered much of the earlier work invalid. Problems refated to the use of
inappropriate organisms, the timing and frequency of sampling events, and undue attention to
biological variable such as growth and reproductive status, have all taken their toll on the
usefulness of data produced by the early pioneers in this field. There are now a number of
treatises available that deal with essential design imperatives for aquatic monitoring programs
and we aim only to summarize the major points here. For further information the reader 1s
referred to the excellent reviews of Phillips (1977, 1978, 1980, 1986a) and Phillips and Segar
(1986).

1.1 Species Selection:

The basic premise underlying the bioindicator concept is that contaminants accumulate in the
tissues of the bicindicator organism at rates that are proportional to concentrations in the
surrounding water. Tissue residue levels are, therefore, a time-averaged indication of each
contaminant’s biological availability at that particular location and point in time.

According to Butler ef al. (1971), Haug ef al (1974), and Phillips (1977), an ideal indicator
has the following attributes:

g It should accumulate the pollutant without being killed by the levels encountered in
the environment
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0 It should be sedentary in order to be representative of the area in which it is collected

o

It should be abundant throughout the study area, easily recognized, and readily
sampled

It should be of sufficient size to provide adequate tissue for analysis

It should be relatively long-lived to permit sampling over several months or years

It should be amenable to transtocation

o &g 0 13

1t should demonstrate a simple correlation between pollutant levels accumulated in its
tissues and the average pollutant concentration in the surrounding water.

The latter prerequisite is of overriding importance here because it requires that the
bioindicator of choice possesses little or no ability to metabolically regulate pollutant levels in
its tissues. Another highly desirable characteristic is that the bioindicator should exhibit a
high concentration capacity for the contaminant in question. Some of the early studies with
heavy metals were compromised by insufficient attention to metabolic control and the flawed
assumption that high tissue concentrations of a particular element were a sign of bioindicator
potential. Crustaceans for example are naturally high in copper and zinc and regulate tissue
levels of both metals within relatively narrow limits (Bryan 1964). Hence, they are of no
practical use as indicators for these elements. Zinc regulation has also been observed in a
number of other invertebrate groups that accumulate this metal to relatively high levels (Bryan
and Hummerstone 1973b, Phillips and Yim 1981, Klumpp and Burdon-Jones, 1982).

During the present study, we have also seen that fish and various invertebrate species have the
capacity to rapidly metabolize and excrete PAHs from their tissues. Thus, they lack the
sensitivity required to identify low-level environmental ensichment by these contaminants.
Even with highly recalcitrant compounds like PCBs, certain bivalves show a preferential
accumulation of the lower chlorinated congeners, while others rapidly eliminate them from
their tissues (Denton 1974, Courtney and Denton 1974, Langston 1978a and b). Thus, it is
important to tailor the choice of organism to the precise requirements of the monitoring
program for PCBs, if the lower chiorinated congeners are of specific interest.

Clearly then, a number of considerations present themselves when selecting a suitable
bioindicator. Some of these considerations are common to ail contaminant groups examined
here while others are more specific. For example, heavy metals are naturally occurring, and
different species have evolved widely differing capacities to accumulate them. Even closely
related species sometimes have metal profiles that are very different from one another. Some
metals are biologically essential and are regulated in certain species but not in others. Again
such differences can occur within, as well as, between biotic groups. The simple fact of the
matter is that no single organism will satisfy the monitoring needs for all heavy metals of
environmental interest. Moreover, comparing metal concentrations between closely related
species can, at best, only provide an approximation of actual differences in elemental
abundance between locations.

For persistent organochlorine compounds like PCBs, the situation is somewhat different.
These are not naturally occurring and are certainly not biologically essential. Consequently
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their uptake is purely a passive process and amounts found in the biota are largely a function
of an organism’s lipid content and composition. Crucial factors that affect PCB levels within
and between species are largely those that influence cyclical events of lipid deposition and
metabolism, and are primarily related to the interactive effects of season and sexual
development, Needless to say, these variables are equally important from a heavy metal and
PAH monitoring perspective. Choosing the correct bioindicator organism or suit of
organisms, and refining sampling parameters and protocols is, therefore, of paramount
importance, if spatial and temporal differences in pollution abundance are to be accurately
assessed.

In temperate regions, a considerable amount of research has focused on the bioindicator
ability of a select group of organisms (mostly brown algae, bivalve mollusk especially
mussels and oysters, and various fish). In contrast, relatively little attention has.been directed
towards the utility of tropical species for monitoring purposes. As a consequence, preliminary
monitoring programs, like the one undertaken here, may be forced to include hitherto
‘untested’ species that are only distantly related to well-established monitoring organisms
from other regions of the world. This particular problem is compounded by the fact that,
while species diversity is characteristically high in the tropical waters, the abundance of any
one species is often not very great.

This was certainly evident during the present investigation. The oysters, for example, were
not found in abundance outside of Apra Harbor. This was indeed unfortunate because these
bivalves are excellent bioindicators of all three contaminant groups. Likewise the distribution
of chamids and spondylids was found to be patchy, and available numbers were clearly
insufficient to support the requirements of a long-term monitoring program in each of the
harbors studied.

Locally, there are a number of other bivalves that could be considered for monitoring
purposes, although they too are either absent or in low abundance in Guam harbors. One such
example is the mussel, Modiolus auriculatus. This particular species occurs intertidally and
on reef flats all around the island and is particularly abundant in Tumon Bay, Tanguisson
Beach and Cocos Island lagoon. The cockle, Gafrarium tunidum, is another example and is
relatively abundant in the mangroves of Sasa Bay. Its close relative, Gafrarium pectinatum, is
widely distributed in sandy deposits of back-reef areas, and the wedge-clam, Tellina palatum,
commonly occurs in sea-grass meadows. The availability of each of these species would
certainly support a transplant-monitoring program providing of course that their bioindicator
potential had been firmly established beforehand.

The tridacnid clams are another group that merit- special mentjon here.. These organisms are
common inhabitants of coral reefs throughout the Indo-Pacific and are particularly sensitive
bioindicators of heavy metal pollution (Kristoforova ef al. 1979, Denton and Heitz 1991,
1993, Dight and Gladstone 1994). They have also been used as indictors of PCBs and PAHs
in Australian waters (Olafson 1978, Smith ef al. 1984, Smillie and Waid 1985).

T. maxima is commonly found on reefs around Guam, although not in the numbers that wouid
support a regular monitoring program. However, culturing techniques are well established for
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this group and large numbers are being raised in hatcheries throughout the Pacific for
commercial purposes, as well as for restocking depleted reefs. Hatchery stocks are very
amenable to transplantation and certain members have been shown to tolerate harbor
conditions, seemingly without any adverse effect (Denton and Heitz 1991, 1993). Given the
close proximity of Guam to Japan and the Asia market, a tridacnid clam hatchery on Guam, is

a very attractive possibility both from a commercial and an environmental monitoring stand-
point.

Other potentially useful candidate species for pollution monitoring purposes on Guam include
the brown alga Padina. This particular genus is relatively widespread in local waters and its
indicator capacity, at least for heavy metals, has been firmly established (Burdon-Jones et al.
1982, Denton and Burdon-Jones 1986). Moreover, there do not appear to be major inter-

specific differences in metal uptake for this genus and so identification to species in the field
is not critical.

Algae are an important component of any pollution-monitoring program because they reflect
the availability of the soluble contaminant fraction and do not respond to fractions associated
with sediments or suspended particulates. Together with bivalves, they can, therefore,
provide the investigator with a greater understanding of contaminant movement and
partitioning within aquatic ecosystems.

The soft corals have received some attention as bioindicators of certain heavy metals although
evidence attesting to their reliability in this regard remains inconclusive (Denton and Burdon-
Jones 1986). Nevertheless, they are a very common component of local reefs, and certain
genera like Sarcophyton and Sinularia are readily identifiable. The current work identified
Sinularia as a promising indicator for tin, zinc, PCBs and PAHs. We also consider this genus
to be a probable indicator of arsenic, and a possible indicator of cadmium and chromium (see
Table 30).

The chief disadvantage of using soft corals as an indicator organism appears to be one of
species identification. The systematics of the group as a whole is not particularly well
documented. Identification to genera can be accomplished relatively easily in the field, as
mentioned above, but species determination, if at all possible, requires verification by spicule
examination. The failure to distinguish between different species of the same genus could,
therefore, compromise inter-site comparisons in contaminant abundance. However, the
monitoring of within-site temporal trends is still possible, if tissue samples are repeatedly
taken from the same colony over an extended period of time.

Of the less well known bioindicators examined here, the sponge, Dysidea sp shows promise
for monitoring arsenic, copper, tin, and zinc. Their high fat content renders them excell(?nt
accumulators of lipophilic contaminants like PCBs and PAHs (Table 30). However, species
identification in the field remains a problem.

The sea cucumbers are an obvious choice for future monitoring purposes, although their

bioindicator potential for all three contaminant groups has yet to be unequivpca}ly establishe:d.
This notwithstanding, they appear to show excellent promise for the monitoring of arsenic,
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tin, and PCB, and very likely have good bioindicator potential for chromium, mercury, zinc,

and PAHs. Holothuria atra, is particularly abundant around much of Guam. The feeding

sorties of this species are restricted to within relatively small areas and so tissue contaminant
levels should be reasonably representative of the collection sites. The tagging and
transplanting of these organisms also offers an attractive means of monitoring the biological
availability of sediment-bound pollutants in areas where they are not common.

The utility of fish as bioindicators of mercury and PCBs is now well established and further
supported by the data presented during the present work. In selecting any particular species of
fish for monitoring purposes, it is important that its migratory habits are known. It cannot be
assumed that contaminant levels in a fish are representative of their capture site, particularly if
it is a migratory species. Usual candidates are demersal species or territorial species with
restricted ranges. One such candidate identified during the present survey was the lizard-fish,
Saurida gracilis. This piscivorous species is extremely common and easily captured by hook

and line. Moreover, it has a relatively large liver that adequately supports the tissue
requirements for analysis.

1.2 Sample Variability:

How well a bioindicator reflects changes in the ambient availability of a contaminant is
determined largely by the degree of variability encountered in the population sampled. The
more variable the tissue levels, the less reliable the organism becomes, and the greater the
number of individuals required to detect a given level of change. Such variability can
essentially be divided into two broad categories, namely that which can be reduced or
eliminated by the investigator, as opposed to that which cannot. Controllable variations
include parameters such as the age/size, growth, fitness, sex, and reproductive condition of the
individuals sampled, in addition to differences related to their position on the shore and/or in
the water column. Uncontrollable variations may be ascribed to regional and seasonal
differences in temperature and safinity, and includes the inherent, natural variability normally
encountered between individuals of the same species as a result of subtle variations in genetic
make-up, metabolic efficiencies, health and well-being. Failure to address these variables

during the initial design phase of a monitoring program can produce data that are extremely
noisy and often highly misleading.

1.3 Program Design: '
Pollution monitoring programs involving the use of bioindicators generally have one or both
of the following objectives:

0 To identify spatial difference in contaminant abundance within an area or region,
inchuding the delineation of “hot-spots’

a To evaluate short- and long-term temporal changes in contaminant abundance within
any particular site or area

Both objectives are separate from one another and have specific requirements (Phillips and
Segar 1986). For example, if the primary goal is to delineate spatial difference in contaminant
bioavailability, it is important to adopt a synchronous sampling regime to ensure that temporal
fluctuations in pollutant availability at each of the sites studied do not interfere with the data.
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On the other hand, monitoring temporal trends in pollutant abundance within any particular
site requires a sampling frequency that is determined by the biological haif-life of the
contaminant of interest if an uninterrupted record of its biological availability is to be
obtained, In addition, the influence of seasonal changes in temperature, salinity and
reproductive status on pollutant levels within the bioindicator needs to be addressed in order
to identify ‘real’ changes in a contaminant’s availability.

Both objectives also have a number of common requirements that must be met in order to
optimize the survey design. For example, it is customary to standardize on a specific size or
size range of individuals in order to eliminate any possible age-dependant variability in
contaminant levels (e.g., mercury in fish). This can be done in one of two ways, either by
selecting a specific size range, or by taking what is available and normalizing the data to a
specific size by regression techniques. Another requirement common to both monitoring
objectives calls for the standardization of collection sites on the shore or in the water column,
and this is particularly important in areas receiving freshwater inflow or in waters that are
highly stratified. Finally, it is necessary to identify the bioindicator’s inherent variability in
tissue pollutant levels in order to optimize sample size for the desired resolution.

1.4 Site Selection:
For monitoring the spatial and temporal variability in pollutant abundance in Guam’s

nearshore waters, a number of sites ranging from ‘suspected as contaminated’ to ‘control’ or
“background” should be chosen. The selection of potential study sites can be based on a
number of criteria, including the following

o Existence of previous data

o Proximity to important fisheries and other edible marine resources

o Proximity to potential sources of contamination (marinas, harbor activities,

discharges from stormwater outlets, sewage treatment plants etc.)

g Proximity to population centers

o Proximity to popular tourist and recreational fishing areas

o Proximity to major river mouths

The control site should be located offshore (e.g., Double Reef) away from the influence of
short-term fluctuations attributable to coastal activities. The distance between sites will vary
according to monitoring needs. However, sites are normally much closer together for hot-spot
delineation than they are for monitoring trends at more remote locations.

2. EVALUATION OF DATA IN RELATION TO CURRENT FOoOD STANDARDS

Some brief comments are appropriate here regarding contaminant levels measured in edible
fish and shellfish during the present study, in relation to national and international food
standards. All standards included in the following discussion are given on a wet weight basis.

Food standards in the U.S. are under the jurisdiction of the U.S. Food and Drug
Administration (FDA) with non-regulatory technical guidance provided by the U.S. EPA.
Current standards for metals and PCBs are listed in Table 31 along with those from various
other countries. There are no national or international food standards for PAHs at this time
(Law et al. 1997).
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Table 31

Compilation of Legal Limits for Hazardous Metals and PCBs
in Fish and Fishery Products® (all values as ug/g wet weight)

Country As Cd Cr Cu Hg Ni Pb Sn Zn PCBs
Australia 1 2 - 1070y  05° - 0.5 150 150 (1000) 0.5
Brazil - - - - 0.5 - - . . .
Canada 3.5 - - - 0.5 - 0.5 - - -
Chile 1 0.5 - 10 - - 2.0 - 100 .
Denmark - - - - 0.5 - - - - -
Ecuador 1 - - 10 1.0 - 5.0 - - -
Finland 5 - - - 1.0 - 2.0 - - -
France - - - - 05,07 - - - - -
Germany - 0.5 - - 1.0 - 0.5 - - -
Greece - - - - 0.7 - - - - -
Hong Kong 1.4 2 1 - 0.5 - 6.0 - - -
India | - - 10 0.5° - 5.0 - 50 -
Israel - - - - 0.5 - - - - -
Ttaly - - - - 0.7° - 2.0 - - -
Japan - - - - 0.3-0.4 - - - - -
Korea - - - - 0.5 - - - - -
Netherlands - 0.5-1.0 - - 1.0° - 0.5,2.0 - 40 -
New Zealand 1 1 - 30 0.5° . 2.0 - - -
Philippines 30 - - - 0.5 - 0.5 - - -
Poland 4 - - 10-30 - - 1.0-2.0 - 30-50 -
Spain - - - - 0.5 - - “ - -
Sweden - - - - 1.0° - 1.0-2.0 - - -
Switzerland - 0.1 - - 0.5 - 1.0 - - -
Thailand 2 - - 20 0.5 - 1.0 - - -
United Kingdom 1 - - 20 0.5 - 2.0-10 - 50 -
United States 76,86% 3,4 12,13¢ - 1.0°  70-80° 1.5-1.7 - - 2.0
USSR - - - . - - - - - -
Venezuela 0.1 0.1 - 10 0.1-0.5 - 2.0 - - -
Zambia 3.5-50 . - 100 0.2-0.3 - 0.5-10 - 100 -

a = modified after Nauen 1983 (unmodified table cited in USEPA 1989),

updated and those listed above may not be current for countries other than the United States and Australia

b = as total mercuty; ¢ = as organic mercury; d = non-enforceable U.S, FDA guidance levels for crustacans (lower value)

Note: Food standards are continually being

and mollusks (higher value) (U.S. FDA 1998); Austratian values in parenthesis are for oysters; dashes indicate no data

- 128 -




e ———

R S ey

B

e

————————

—————

It can be seen from Table 3, that the only enforceable heavy metal standard for seafood in the
U.S. is that for mercury. An ‘action level’ is currently set at 1.0 ng/g and is for organic
(methyl) mercury rather than total mercury. There is some controversy over this limit, with
U.S. EPA maintaining that it should be 3-5 times lower to adequately protect consumess. Asa
consequence the standard is currently being re-evaluated (U SFDA 1998).

A number of other countries have set lower limits for mercury. Japan for example, exercises a
0.3 pg/g standard for total mercury while the maximum permissible level in Australia and
Canada is 0.5 ug/g. In our study, only four out of 75 fish analyzed exceeded 0.3 pg/g. Of

these, three were above 0.5 pg/g and only one was higher than 1.0 pug/g. Interestingly, all four
fish were captured in Apra Harbor.

The only other enforceable FDA food standard that is applicable to this study is the 2.0 pg/g
tolerance level established for total PCBs. This standard is approximately one order of
magnitude higher than the highest value determined during the present study, assuming that
total PCBs are roughly equivalent to twice the sum of all detectable congeners (Z20PCB).
Germany and Sweden have set identical limits to the U.S standard. However, the recently
introduced Austrafian standard for PCBs in fish is significantly lower and stands at 0.5 ug/g
(NFA 1992, cited in Roach and Runcie 1998).

The U.S. FDA has recently prepared a series of non-enforceable guidelines for arsenic (total),
cadmium, chromium, lead and nickel in shelifish (crustaceans and mollusks). Proposed
‘levels of concern’ are listed in Table 31 and assume a shellfish consumption of 15
g/person/day. One has to wonder at the adequacy of these standards for populations that rely
heavily on the sea for their primary source of protein. Fortunately, levels of all five elements
determined in edible species from Guam were well below the FDA proposed limits, with the
possible exception of arsenic in octopus — a popular food on Guam. This single specimen
from Apra Hatbor contained 19.3 pgAs/g wet weight in its tentacles. Persons consuming in

excess of 60 g of octopus on a daily basis could, therefore, be at risk of deleterious health
effects.

Opysters are another group of mollusks that are commonly consumed locally. Indeed, they are
a favored dish in many parts of the world, including the U.S. The absence of an FDA food
standards for copper and zinc is, therefore, surprising in light of these organisms’ exceptional
ability to accumulate both elements. Oysters from Agana Boat Basin and Apra Harbor were
heavily contaminated with copper and zinc and frequently contained levels of both elements
in excess of the appropriate current Australian food standards (see Table 31).

3. RECOMMENDATIONS FOR FUTURE WORK

This preliminary investigation generally suggests that Guam’s harbor environments are
relatively clean by world standards, However, there is evidence of small localized hot-spots
for several metals and PCBs in Agana Boat Basin and Apra Harbor. We strongly suspect
there are others, particularly in the inner Apra Harbor area where high levels of several heavy
metals, including tin, are known to exist. Other areas of suspected enrichment include the
anchorage and mooring facilities abutting the Piti Channel, and in Sasa Bay. The mangroves
in Sasa Bay were total destroyed by an oil spill 2 number of years ago and, despite intensive
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cleanup and replanting activities in this area, the underlying sediments remain heavily
contaminated. The extent of the PAH contamination here is unknown but is likely to be
considerable. We also know very little about contaminant levels residing in sediments and
biota outside of the harbor environments. In all probability they are low, although certain
areas close to river mouths may be considerably enriched. The Pago River mouth is an
obvious focal point for future monitoring studies in view of the drainage waters it receives
from the Ordot landfill. Likewise, for coastal areas close to sewer outlets and wastewater
discharges in Agat, Merizo, Yona, Tamuning, and Agana, We also need to establish baseline
contaminant levels for our cleaner, relatively unimpacted stretches of coastline, Without such
vital information, the effects of future developments in these areas will be difficult to assess.
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