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Abstract 
 

The limestone aquifer of northern Guam supplies more than 90% of the island’s 

drinking water.  The quantity of groundwater available for extraction can be measured in 

terms of the freshwater lens thickness.  Lens thickness can be measured directly from well 

salinity profiles and inferred indirectly from water levels.  The amount of recharge that 

replenishes the aquifer depends primarily on seasonal and inter-annual changes in rainfall as 

well as on evapotranspiration, rainfall intensity, and infiltration pathways.  Time series data 

were evaluated in order to determine lens response to recharge and drought.  Lag time 

responses to variations in recharge were determined and can be used as an indicator of lens 

responsiveness.  This project characterizes the response of the lens to natural climate 

variations, and documents lens and transition zone dynamics driven by both abundant 

recharge and extensive drought.  It will provide an observational baseline against which the 

accuracy of past, present, and future modeling studies can be evaluated and by which future 

modeling studies can be reliably parameterized. 

 

Key words:  lens thickness, Yigo-Tumon Basin, Northern Guam Lens Aquifer, rainfall 
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Chapter 1 

 

INTRODUCTION  

 

Guam is located at 13o 28’ N, 144o 45’ E and is the largest island of the Mariana 

Islands chain.  The island is 30 mi (48 km) long and 4-12 mi (6.5-18.5 km) wide with a total 

area of 212 mi2 (550 km2).  The Philippines is 1,370 mi (2,220 km) to the west, and Japan is 

1,740 mi (2,800 km) to the north-northwest.  The Mariana Islands are high points of a 

submarine ridge and the Mariana Trench, a deep subduction zone, lies 62-100 mi (100-160 

km) southwest (Figure 1.1.).  A fringing reef encircles most of the island apart from a few 

coastline cliffs. 

 

 
Figure 1.1. Guam, USA, Mariana Islands. 

 

The limestone aquifer of northern Guam supplies more than 90% of the island’s 

drinking water.  As Guam prepares for economic growth, the demand for water from the 

aquifer is a major concern.  This research project uses historical groundwater hydrographic 

data and local meteorological data to study how the thickness, and hence the volume, of the 

freshwater lens in the Yigo-Tumon Basin responds to natural changes in recharge.  The 

Yigo-Tumon Basin is the largest of the aquifer’s six basins (Figure 1.2.), supplying 18 mgd, 

or 56%, of the total production of 33 mgd from the Northern Guam Lens Aquifer (NGLA) 

(Joe Garrido 2016, personal communication). 

Time-series data from the three salinity-profiling wells in the basin were analyzed to 

gain insights into the timing, rates, and magnitudes of changes in lens thickness in response 

to seasonal, inter-annual, and episodic (storm) variations in rainfall (Figure 1.3.).  Findings 

support the development of effective sustainable management practices, including 
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appropriate policy and management responses to storms and droughts.  Improved 

understanding of observed lens dynamics will also help to improve the reliability of 

groundwater models. 

 

 
Figure 1.2. NGLA Basins. 

 

 
Figure 1.3. Observation wells in Yigo-Tumon Basin (www.guamhydrologicsurvey.com). 

http://www.guamhydrologicsurvey.com/


3 
 

The quantity of groundwater available for extraction can be measured in terms of the 

freshwater lens thickness.  Lens thickness can be measured directly from well salinity 

profiles and inferred indirectly from water levels.  The lens thins or thickens in response to 

storage changes, changes in recharge and water withdrawal (production).  The amount of 

recharge that replenishes the aquifer depends primarily on seasonal and inter-annual changes 

in rainfall.  Major storms account for only a few percent of total rainfall but induce rapid 

responses in water levels and can thus have important immediate short-term effects on water 

quality.  The timing and amounts of wet and dry season rainfalls are strongly influenced by 

El Niño Southern Oscillation (ENSO) events.  Annual rainfall on Guam is reduced by as 

much as 50% during the year following strong El Niño (Lander 2016, personal 

communication).  A strong El Niño is typically accompanied by a severe Micronesia wide 

drought, and typically results in some depletion of the freshwater lens, but the rate and 

magnitude of depletion has yet to be rigorously evaluated. 

Lens thickness depends on the porous media properties, recharge, and discharge. 

Taborosi (2004) provides an inventory and describes characteristics of the karst terrains on 

Guam.  Ayers (1995) and Rotzoll et al. (2012) applied the Ferris-Jacob equation to tide data 

and well-level records, determining regional hydraulic conductivity in the NGLA.  Several 

research works have been done to estimate recharge that reaches the lens (c.f., Ayers 1995, 

Jocson et al. 2001, Habana et al. 2009, and Johnson 2013), and have estimated recharge to 

vary from about 40-67% of rainfall.  Gingerich (2013) constructed a 3-D SUTra (Saturated 

Unsaturated Transport) steady-state model of the NGLA, using Johnson’s (2013) recharge 

estimates. 

This project builds on three significant WERI technical reports.  Technical Report 

141 (Bendixson et al. 2013) provides a comprehensive well and borehole database that was 

used to help acquire, organize and refine the data needed for this study.  Technical Report 

142 (Vann et al. 2014) describes the NGLA basement topography.  This information 

provides subsurface geology as boundary conditions, setting, and basin divides.  It also 

defines the spatial scope of this study in determining the boundaries of the Yigo-Tumon 

Basin.  Simard et al. (2015) at the end of Technical Report 143, touched on the aquifer lens 

profile.  Three cross-sections of the aquifer were drawn using borehole records and basement 

topography.  Although their study of chloride and production does not locate the saltwater 

interface and its dynamics, their introduction into that topic provides the starting point for the 

hydrogeologic study of lens thickness, as defined by salinity profiles, which is the basis for 

this study. 

 

1.1.  Goals, Purpose, and Steps 

The goal of this project is to characterize the response of the lens to natural, decadal-

scale climate variations.  The ultimate purpose (application) of the results will be to provide 

an empirical basis for determining appropriate sustainable management practices, given the 

hydrogeologic complexity of the aquifer and the natural environmental stresses on it.  This 

project consisted of the following steps: 

 

1. Collect, examine, and organize available and useful historical meteorological data from 

National Climatic Data Center (NCDC) and groundwater data (USGS) from deep 

observation wells (DOWs) in the Yigo-Tumon Basin. 
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2. Apply hydrographic and statistical analyses for deep wells in the Yigo-Tumon Basin (EX-7, 

GHURA-Dededo (GD), and EX-10)(Figure 1.3.) and use applicable data (e.g., water level 

and transition zone response, and head-to-saltwater-interface ratios) to characterize saltwater 

profiles in each well. 

3. Interpret the analyses to determine the timing of changes in the lens thickness and how they 

relate to seasonal, inter-annual, and episodic changes in rainfall. 

4. Infer what the responses to changes in rainfall may tell us about how to determine 

appropriate sustainable development strategies for the NGLA. 

 

1.2.  Scope, Limitations, and Delimitations 

Scope: The geographical scope of this project is the Yigo-Tumon Basin (Figure 1.3.).  

The temporal scope is from 1982 to 2016 for water level and 2000 to 2016 for salinity 

profiles.  Three DOWs are installed in the basin: EX-7, GD, and EX-10.  These wells provide 

data from 2000 to the present on lens thickness along calculated flow lines.  Data from 2000 

to 2016 were analyzed for this study. 

Limitations: DOW data provide a time series of water levels and salinity profiles for 

each well.  These wells provide dynamic information on lens thickness.  Long-term sea-level 

signals affect water table elevation, but not lens thickness.  In separate, water-level 

monitoring wells (M-10A, M-11 and MW-2, Figure 1.3.), US Geological Survey (USGS) 

logs dynamic hydraulic head but does not measure the saltwater transition.  Water levels 

from these wells can be used to infer a probable saltwater depth using the Ghyben-Herzberg 

ratio (40:1) (Fetter 2000). 

Delimitations: This project is limited to the well set in the Yigo-Tumon Basin and 

available meteoric, tidal and climate data.  Main variables of interest are water level, 

freshwater lens thickness, transition zone thickness, and seasonal lens thickness dynamics 

(time lag and response to recharge).
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Chapter 2 

 

BACKGROUND AND RELATED RESEARCH 

 

The limestone in the northern half of Guam stores groundwater in the form of a 

freshwater lens and comprises the Northern Guam Lens Aquifer (NGLA). The NGLA’s 

freshwater lens forms from infiltrated rain (recharge) buoyant on saltwater, diffusing at the 

freshwater-saltwater interface, which can be observed in deep observation wells (DOWs) and 

coastal caves.  DOW salinity profiles reveal freshwater lens and saltwater transition zone 

dynamics, which reflect responses to recharge and sea level.  The thickness of the freshwater 

lens as measured in EX-7, GHURA-Dededo (GD), and EX-10, ranges between 90-140 ft (27-

43 m), and the transition zone thickness ranges between 40-120 ft (12-37 m) for all three 

wells. 

Lens dynamics, position and thickness, may be influenced by sea level and 

groundwater recharge.  Sea level and recharge can be influenced by natural climate cycles 

(e.g., El Niño, La Niña) that bring on unusual periods of prolonged low sea levels, drought, 

and irregular storm patterns in the region.  Typhoons and storms may bring intense rainfall, 

which can infiltrate into effective recharge that thickens the lens.  In contrast droughts can 

stop aquifer recharge while the lens continues to discharge, leading to a negative change in 

freshwater storage, thus thinning the lens. 

Simard et al. (2015), Salinity in the NGLA, depicted lens thickness with cross-section 

figures of the aquifer using borehole data (Bendixson 2013), basement topography 

interpolation (Vann et al. 2014), and observation well data.  This research advances from 

Simard’s work, expanding on the lens profile by analyzing freshwater lens dynamics, 

including influence of climate variations and aquifer geology. 

Observation well data have been collected by USGS and the Water and 

Environmental Research Institute of the Western Pacific (WERI) since 2000 when the wells 

were rehabilitated and the USGS/WERI collaboration started.  This research refines the 

definition of freshwater lens and the transition zone and applies a time-series analysis using 

data from the observation wells in the Yigo-Tumon Basin.  Analyses compare well data to 

ENSO index, rainfall, and sea level data to characterize lens response. Results may also 

provide insights into the aquifer’s geologic structure and its hydrogeology.  This chapter 

summarizes related literature, aquifer geology and hydrogeology, and data sources and 

quality. 

 

2.1.  Related Literature 

The formation of a freshwater lens atop saline groundwater occurs in unconfined 

coastal and island aquifers.  While the Ghyben-Herzberg (1889-1990) ratio of 40 to 1 

(interface depth from mean sea level to hydraulic head) is the rule of thumb for lens aquifers, 

the approximation does not hold in all field cases.  Literatures on the NGLA provide cross-

section schematic diagrams, depicting the groundwater as a freshwater lens atop saltwater 

(c.f., CDM 1981, Jocson et al. 1998, Mylroie et al. 2000), however, such depictions usually 

have parts that are vertically exaggerated to make spatial relationships more visible.  The 

freshwater-saltwater interface, for example, has been recognized as a halocline based on 

observation well salinity profiles, where chloride concentration increases with depth from 

fresh to saltwater, over a few feet to tens of feet. 
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Observation well water-level data have been used in earlier studies.  Jocson et al. 

(1998) used the SWIG-2D numerical model to study recharge, well-level response, and 

examined storm recharge in observation wells M-10A and M-11.  McDonald (2001) 

compared salinity patterns in production wells with salinity data from nearby observation 

wells in her study of the relation between well characteristics and salinity.  Wuerch et al. 

(2007) applied a Fourier transform numerical analysis to match tide and observation well 

water-level response (EX-7, GD, EX-10).  Habana et al. (2009) developed a recharge 

synthesis dynamic model into a finite element groundwater model to match water-level 

simulation to observation wells.  Eeman et al. (2010) studied freshwater lens formation and 

transition zone response to recharge using analytical and numerical steady-state models for 

lens development.  Their model results show a sharpening of the transition zone during 

recharge and lens thickening.  Gingerich (2013) applied USGS’ Saturated Unsaturated 

Transport, Graphical User Interface, (SUTra GUI), to create a 3-D model of the NGLA, 

using observation well salinity profiles to calibrate his model.  In all efforts to model the 

NGLA, each recommended strategic placement of more observation wells to further improve 

modeling reliability and have a data-based understanding of lens thickness dynamics. 

Simard et al. (2015) extended McDonald’s 2001 study of salinity from production 

well data in the NGLA which was used to support Gingerich’s model.  Simard’s study 

utilized DOW data and compared salinity profile depths to the depths estimated from the 

Ghyben-Herzberg rule (40:1) and showed that actual depths varied from 28:1 to 46:1.  She 

defined the component layers of the phreatic zone in terms of the prime layer (freshwater) 

which extends from the water table to the depth at which salinity reaches 250 mg/L Cl-. 

2.2.  Geology 

The geology of Guam (Tracey et al. 1964; Siegrist and Reagan, 2007) is the starting 

point for determining where groundwater and surface water may exist.  Topography and 

geology determine the form and shape of watersheds and aquifer basin boundaries.  Guam is 

made up of two major groups of rocks, divided by the Pago-Adelup fault into two distinct 

physiographic terrains, volcanic rocks in the south and a limestone plateau atop volcanic 

basement in the north (Figure 2.1).  The Alutom Formation in the south continues through 

the Pago-Adelup Fault, beneath the NGLA, and crops out at Mt. Santa Rosa and Mataguac 

Hill. 

The NGLA is composed of limestone deposits that began about 16 mya (Miocene-

Pliocene) on top of Alutom terrain, in a reefal setting that has been uplifted to form the 

limestone plateau seen today.  Two main limestone units, the Barrigada Limestone and the 

Mariana Limestone, comprise the aquifer.  

Barrigada Limestone is a white, medium-to-coarse grained detrital limestone that was 

deposited in relatively deep waters in the Mio-Pliocene (Siegrist and Randall 1992, in Mink 

and Vacher 2004) by foraminifera along the volcanic flanks of the Alutom volcano.  The 

Mariana Limestone was deposited in the Pliocene and Pleistocene under atoll-like conditions 

as evidenced by the presence of fore-reef facies, reef facies, detrital faces and molluscan 

facies (Tracey et al. 1964).  Argillaceous limestone is formed adjacent to the Alutom 

Formation which extends across the fault and beneath the NGLA. 
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Figure 2.1.  Geologic map of Guam (Siegrist and Reagan, 2007).  The northern half of Guam 

is the NGLA, north of the Pago-Adelup fault, made up of 3 major limestone formations – 

Barrigada Limestone, Mariana Limestone, and the Argillaceous Member of the Mariana 

Limestone.  South of the fault are volcanic formations of Facpi, Alutom, and Umatac.  The 

Alutom Formation continues beneath the NGLA as the basement, seen cropping out at 

Mataguac Hill and Mt. Santa Rosa. 

 

2.3.  Northern Guam Lens Aquifer (NGLA) 

The definition of an aquifer requires that a body of natural porous material must be 

able to capture, store, and release water in economically significant quantities. The US 

Environmental Protection Agency (USEPA) (1978) designated the NGLA as the primary 

source of utility water on Guam, supplying up to 90% of the island's municipal water.  The 

NGLA is composed of young, eogenetic karst.  The aquifer consists of highly permeable 

limestone bedrock underlain by much less porous volcanic basement rock (Figure 2.2). At 

the surface, limestone permeability is highest resulting in a lack of surface streams in 

northern Guam (Mink and Vacher 2004).  While there are some limestone units in the south 

that store water, their productivity and quality for municipal use is considered much less 

Pago-Adelup Fault 

Northern Guam Lens Aquifer 

Southern Guam 

Rivers and Streams 

Barrigada  
Limestone 

Mariana  
Limestone 

Argillaceous limestone 

Alifan Limestone 

Alutom Formation 

Alutom  
Formation 
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Figure 2.2.  Schematic diagram of the NGLA. 
 

favorable and less available compared to the NGLA (more than 100 production wells).  Only 

three groundwater resource sites are in use in the south today – two vertical wells in Malojloj 

and a spring reservoir at Santa Rita.  Most of the water in the south is surface water from 

Fena Reservoir and the Ugum Watershed. 

The NGLA is an unconfined carbonate island karst aquifer (Mylroie and Jenson 

2000).  The aquifer has three laterally distributed freshwater zones: basal, parabasal, and 

suprabasal.  In cross-section view (Figure 2.2.), the basal zone includes the freshwater 

underlain with saltwater.  The parabasal zone is the area between the saltwater toe and mean 

sea level (msl).  The suprabasal zone is the freshwater that occurs above msl over the 

basement. 

The aquifer has undergone karstification, and most of the intense precipitation that 

falls in the north drains directly and quickly into the ground through sinkholes.  Jocson et. al. 

(2002) found that during wet conditions, water levels can rise within hours, which suggested 

quick transmission into the aquifer during intense storms. 

Vertically, the aquifer is divided into a vadose zone and a phreatic zone.  The vadose 

zone is an important medium of recharge.  Jocson et al. (2002) suggested that the thickness 

and saturation of the vadose zone influences how fast meteoric water gets to the lens.  Water 

can take two paths down to the lens as is the nature of karstic aquifers.  It can flow down 

through fast flow conduits during heavy storms (taking only a few hours), while water from 

more gentle rainfall can percolate through the matrix pores of the vadose zone which can 

take months to years (Lander 2001). 

The phreatic zone is the zone of interest in this project, as it contains the freshwater 

lens, a freshwater-saltwater transition zone, and the underlying saltwater zone.  The 

freshwater lens is an irregular lenticular freshwater layer floating on top of the denser 

saltwater base (Figure 2.2.).  Freshwater from the lens discharges at the coast. 

The freshwater lens of the NGLA is thought to be generally 120-150 ft (36-45 m) 

thick in its thickest parts.  Between the freshwater and saltwater is a halocline, or transition 

zone, in which the concentration of saltwater increases with depth.  The depth and thickness 

of this transition zone changes as the lens thins or thickens. 

 

2.3.1.  Hydrogeology and hydrology 

Mylroie and Jenson (2000) describe the hydrogeology of small islands with volcanic 

basements overlain by young, diagenetically immature limestone.  This aquifer has retained 

much of its original matrix porosity and developed secondary and tertiary features associated 

basal
parabasal

suprabasal

fw-sw transition freshwater

saltwater

volcanic basement

limestone bedrock
vadose

phreatic

msl

sea

wt

sw toe
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with older, diagenetically mature aquifers.  Dissolutional enhancement of fractures and 

conduits create a horizontal network of pathways for water to flow through.  This results in a 

complex aquifer with hydraulic conductivities that vary widely on both local and regional 

scales.  Island karst aquifers can be classed into types described by the Carbonate Island 

Karst Model (CIKM) (Jenson et al. 2006).  The NGLA is composed of all the carbonate 

island karst model types:  simple, carbonate-cover, composite, and complex.  Basement 

topography (Vann et al. 2014) reveals locations of all the types of the CIKM model in the 

NGLA. 

The Barrigada Limestone is the core of the aquifer in that it stores most of the 

available freshwater.  In general, the Mariana Limestone occupies a peripheral barrier which 

is intersected by fractures, conduits, and flank margin caves, from which freshwater stored in 

the Barrigada Limestone discharges (Rotzoll et al. 2013).  The Argillaceous Member of the 

Mariana Limestone in the south of the NGLA (in the Hagåtña Basin), has reduced 

permeability and hydraulic conductivity, resulting in the formation of small surface streams. 

The porosity of the limestone units can vary locally from 10 to 25% (Mink and 

Vacher 1997).  The porosity determines the hydraulic conductivity of the NGLA and 

influences water transmission into and discharge out of the aquifer.  This hydraulic response 

is important for understanding how local and regional climate events affect lens thickness.  

Sinkholes, fractures, and large pore openings in the limestone bedrock facilitate fast recharge 

routes to the lens, while the small pores of the matrix provide the medium for percolating 

flow. 

Rainfall on the NGLA infiltrates the surface and percolates through the deep 

limestone vadose zone (200-600 ft).  When rain hits the surface, some of the rainfall is lost to 

evapotranspiration and some infiltrates to recharge (Jocson et al. 2002).  Jocson et al. 

estimated 67% of annual rainfall on Guam is delivered to the lens, and the rest returns to the 

atmosphere through evapotranspiration.  However, Johnson (2012), suggests that recharge is 

generally to 40-60%.  When the infiltration rate is exceeded, surface runoff forms, streaming 

to surface-depression low points, ponding basins and sinkholes.   

 

2.3.2.  Freshwater lens dynamics 

Lens dynamics in the NGLA are driven by meteoric recharge, discharge, and sea-

level.  Simard et al. (2015), however, observed that not all wells in the NGLA are equally 

influenced by these factors. 

Recharge is dependent on rain infiltration, which is enhanced during high intensity 

rain and long periods of rainfall.  This type of weather is expected during Guam’s wet 

season, monsoon conditions, and typhoons.  Observation well data have shown response to 

rainfall, especially under periods of stormy weather, similar to that observed in surface water 

hydrographs (c.f. Jocson et al. 2001, Habana et al. 2009).  The dry season and prolonged 

droughts have much less rainfall, thus much less recharge.  Partin et al. (2012) concluded that 

of the 30% of annual rainfall that falls during the dry season, none of it goes into the lens as 

recharge.  In these periods, discharge exceeds recharge, thus a decrease in storage and 

thinning of the lens is expected. 

Tidal signals and sea level may displace lens position.  The buoyant freshwater rides 

on the vertical displacement of saltwater beneath as the sea level changes.  The displacement 

attenuates inland and depends on hydraulic conductivity and frequency of the tidal/sea level 

signal.  Tidal-signal and water-level relationships have been observed in some observation 

well data.  Ayers et al. (1985) and Rotzoll et al. (2012) used tide and observation well data to 
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estimate regional hydraulic conductivity.  Olsen (2007) suggests El Niño can cause longer 

changes in sea levels as the result of changing winds and currents and that these changes 

have a significant effect on aquifer dynamics (Figure 2.3). 

2.3.3.  Climatology and sea level 

Guam has a warm, wet/dry, tropical climate.  It has characteristic wet and dry seasons 

with the wet season being July-November and the dry season December-June.  Annual 

rainfall on Guam is 90-110 in (230-280 cm) and approximately two-thirds occurs from July 

to mid-November (Tracey et al. 1964).  Tides are semidiurnal and have a mean range of 1.5 

ft (0.5 m) with a diurnal range of up to 2.3 ft (0.7 m).  Tidal/sea level changes do not affect 

freshwater lens thickness, only the vertical position of the lens within the aquifer. 

Figure 2.3. Lens dynamics conceptual model. 

 

Sea level and precipitation are affected during El Niño years with sea level dropping a 

foot or more and a shifting of precipitation patterns from wet to dry (Figure 2.4.).  Guam 

tends to see El Niño about every 2-7 years, with a strong El Niño every 15-20 years.  The 

effects of El Niño on lens thickness therefore need to be examined. 
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Figure 2.4. Timing of climatic hazards on Guam, associated with El Niño.  El Niño events 

can have significant effect on lens dynamics.  Heavy rain from tropical storm activity 

increases lens thickness, and prolonged drought in the Post-Peak Phase can thin the lens.  Sea 

level drop can affect lens position within the aquifer (Lander, PEAC report).  

2.3.4.  Aquifer basin management 

The NGLA is currently divided into 6 basins (Figures 1.2. and 2.5.).  The Northern 

Guam Lens Study (CDM 1982) first delineated aquifer basins and zones for management.  

Vann (2014) redefined the basement divides that delineate the basins.  Flowline boundaries 

are based on Gingerich (2013).  Shalilian (2017) recommended the re-delineation between 

the Finegayan and Yigo-Tumon basins, with consideration of the hydrogeologic divide along 

the Pugua Fault. 

2.4.  Yigo-Tumon Basin Related Data 

The scope of this project is the analysis of lens dynamics observed in the three observation 

wells in the Yigo-Tumon Basin.  Observation well data from Guam are managed and 

collected by the USGS Pacific Island Water Science Center and WERI, funded in 

cooperation through the Comprehensive Water Monitoring Program (CWMP) and National 

Streamflow and Groundwater Information Program.  Of the 15 observation wells managed 

through the CWMP, five are in the Yigo-Tumon Basin (Figure 1.3.).  Rainfall and Oceanic 

Niño Index (ONI) are from the National Climate Data Center (NCDC, part of NOAA) 

available in their website database (see Chapter 3 for data sources), respectively.  The 

following subsections cover data types, sources, and level of quality for the observation 

wells.  

2.4.1.  Observation wells 

Wells on Guam are either production wells or observation wells (Bendixson et al. 

2013).  Some observation wells monitor only water levels, such as M-10A and M-11, while 

others fully penetrate the lens to saltwater (EX-7, GD, EX-10) (Figures 1.3. and 2.6.).  The 

focus of this study is the observation wells in the Yigo-Tumon basin, specifically EX-7, GD, 

and EX-10.  
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Water level is measured quarterly in all wells, and continuously in EX-7 and EX-10.  

Quarterly measurements are taken using a steel tape or e-tape.  Continuous water levels are 

measured using vented transducer/loggers.  Specific conductance profiles are collected 

quarterly, using conductivity-temperature-depth (CTD) loggers.  The data are downloaded 

from the loggers and are processed (quality screening) and verified by USGS standards (see 

Table 3.1. Data Sources).  

 

 
Figure 2.5. NGLA basin delineation.  Basal delineation over the basal zone based on 

groundwater model water table flowlines. 

 

 
Figure 2.6. Schematic diagram of observation wells in the NGLA. Deep observation wells 

(far left) penetrate the entire lens.  Others (middle and right) monitor only water levels. 
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Chapter 3 

 

METHODS 

 

One of the objectives of this project was to apply graphical time-series and basic 

statistical analyses to the collected and organized data from observation wells and 

contributing hydrologic variables.  This chapter will cover the methods for each data 

analysis. The data used in the analyses are available online and are discussed and access-

referenced in the first section of this chapter (Table 3.1). 

 

3.1.  Data Sources 

Observation well and climate data are readily available from online sources (Table 

3.1).  The observation well data used are from the CWMP, Guam P.L. 24-161, which 

contracts the USGS’ Pacific Islands Water Science Center to collect and post Guam’s 

observation well data on their website.  The Guam Hydrologic Survey (GHS) (Guam P.L. 

24-247) website organizes these USGS data links and borehole information in the NGLA 

Borehole Database.  Rainfall data are available for Guam in the archives of the NCDC and 

USGS, websites with links accessible in the Guam Hydrologic Survey (GHS) and may be 

obtained from the NCDC online by request via e-mail.  Oceanic Niño Index (ONI) data are 

available in National Oceanic and Atmospheric Administration’s (NOAA) Climate 

Prediction Center (1950-2018).  ONI is used to determine El Niño conditions in the east-

central tropical Pacific region (120°-170°W).  Sea level data are measured from the NOAA 

gage in Apra Harbor.  For this study, data spanning 2000-2016 were gathered and organized.  

Table 3.1. organizes the data and online references. 

 

Table 3.1.  Data Sources 

Observation URL link 

EX-7 
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_n
o=133119144491771 

EX-10 
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_n
o=133224144495271 

GHURA-
Dededo 

http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_n
o=133120144505471 

M-10A 
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_n
o=133032144491871 

M-11 
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_n
o=133047144500171 

Rainfall 
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD
&resolution=40 

ONI 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.sht
ml 

Sea level https://www.ngdc.noaa.gov 

SST https://www.ngdc.noaa.gov 

http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133119144491771
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133119144491771
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133224144495271
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133224144495271
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133120144505471
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133120144505471
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133032144491871
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133032144491871
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133047144500171
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=133047144500171
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD&resolution=40
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD&resolution=40
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml
https://www.ngdc.noaa.gov/
https://www.ngdc.noaa.gov/
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3.2.  Data Analysis 

Four analyses were undertaken for each of the three deep observation wells: 1) 

salinity profiling; 2) salinity time series and basic statistics; 3) multivariate correlated times 

series; and 4) salinity boundary frequency analysis.  For each, a Microsoft Excel® 

spreadsheet was used for organizing tables and preparing graphs.  Salinity profiles were 

graphed and examined for determining and defining the phreatic interfaces and transition 

zones.  A multi-variable time-series analysis was made for each well to correlate contributing 

hydrologic variable data of ONI (ENSO), sea level, and rainfall to the phreatic graphs.  

Finally, for each deep observation well, a vertical graph of frequency analysis of the phreatic 

interfaces (defined in the next section) was done.  Each of these analyses is described below. 

 

3.2.1.  Using salinity profiles to define phreatic zone anatomy 

Several salinity profiles from EX-7, GHURA-Dededo (GD), and EX-10, were 

graphed and examined for patterns and characteristic shapes (Figure 3.1.).  The USEPA 

secondary standard for freshwater (250 mg/L Cl-/1100 µS/cm) was used as the definition of 

freshwater (which Simard et al. 2015 called the prime layer) for this study.  The transition 

zone was sub-divided into brackish, saline, and saltwater based on definitions from The 

Glossary of Hydrology (Wilson and Moore 1998). 

 

 
Figure 3.1. Salinity profile for defining phreatic zone anatomy.  The shape of the graph is 

common to the observation wells in Yigo-Tumon Basin. 

This study defines the top of the freshwater lens as the water table and the bottom of 

freshwater lens (BoFL) as the level at which conductivity reaches 1100 µS/cm.  The 

BoFL 

BoTZ 
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freshwater grades sharply at the beginning of the transition zone consisting of brackish and 

saline water and ending in saltwater at the BoTZ (bottom of transition zone, >49000 µS/cm).  

Figure 3.1. defines phreatic zone anatomy and shows the three interfaces of interest: 1) the 

freshwater/brackish interface; 2) the brackish/saline interface; and 3) the saline/saltwater 

interface.  The establishment of phreatic profile definitions determines the selected data for 

extraction from each quarterly measured salinity profile.  These data are then used for the 

time-series and statistical analyses of the phreatic zones for each well. 

 

3.2.2.  Time-series analysis of observation well data 

With phreatic zone anatomy defined, time series of interface-depth graphs can be 

generated for each of the DOWs (EX-7, GD, and EX-10).  Freshwater-brackish interface 

(BoFL), brackish-saline interface (50% chloride), and saline-saltwater interface (BoTZ) data 

were extracted and graphed, spanning 16 years, 2000-2016. 

Freshwater lens thickness can be calculated from the difference between water-level 

elevation and the depth to the BoFL.  The transition zone thickness is the difference between 

BoFL and BoTZ.  The time-series graphs are available in the results section. Statistical 

analysis was done for each interface, lens thickness, and transition zone thickness.  

Minimum, maximum and averages were calculated for these components.  Minimum and 

maximum and percent changes from average were also determined and shown.  The Ghyben-

Herzberg ratio was used as a guide to calculate actual head-to-saltwater-interface ratios from 

water-level data for all DOWs.  This ratio was averaged between the three wells and then 

applied to M-10A and M-11.  This was done to estimate 50% isochlor depth. 

 

3.2.3.  Development of a multi-variable time-series analysis 

A multi-variable time-series analysis was developed that compares contributing 

hydrologic variables to observation well time-series data.  It is basically an observation well 

hydrograph of phreatic zone interfaces with time-aligned graphs of climactic factors:  ONI 

(ENSO) index, sea level and rainfall.  As mentioned in the previous chapter, observation well 

response may be a result of meteoric recharge, sea level changes, and ENSO effects on sea 

level and rainfall in the region.  The prepared graphs for ONI, sea level, and rainfall are 

aligned above charts of observation well water-level, salinity transition zone, and interfaces.  

This analysis will elucidate the major effects of influential elements on the lens. 

Strong El Niño and La Niña events are observed to affect Guam’s climate.  The 

Oceanic Niño Index (ONI) defines El Niño and La Niña events.  Three-month running 

averages of ONI and SST (Sea Surface Temperature), 2000-2016, are charted and placed at 

the top.  Graphs of daily rainfall and 5-year running sum of rainfall are placed below the 

ENSO index chart, and below that, the daily average sea level data.  The data from the 

observation wells (well level, transition zone interfaces, and lens thickness) are graphed 

beneath climactic variables.  The multi-variable time-series analysis charts of EX-7, GD, and 

EX-10 are in the Results section. 

3.2.4.  Development of a frequency analysis of phreatic zone interfaces 

Finally, a vertical frequency analysis of observation well interfaces was developed for 

each DOW in the Yigo-Tumon basin.  A Microsoft Excel® histogram analysis was done for 

each interface (with the exception of the brackish-saline interface), water level and transition 

zone, and is displayed in the Results.
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Chapter 4 

 

RESULTS 

 

The graphs in this section are the results of techniques described in Chapter 3. These 

results are shown in time-series graphs that correlate the selected contributing hydrologic 

variables to the vertical displacement of the phreatic interfaces.  The contributing variables 

examined are ONI, SST (Figure 4.1.), sea level (Figure 4.2.), and rainfall (Figure 4.3).  Long 

term correlations of water level and rainfall for EX-7 are shown in Figure 4.4.  Daily water 

levels in each well are graphed in Figure 4.5.  The contributing hydrologic variables and 

phreatic interfaces time-series are then correlated in a multi-variable phreatic-interface 

hydrograph (Figures 4.6-4.8).  Figure 4.9. shows calculated depth to the 50% isochlor for two 

water level only wells.  Figure 4.10. shows the correlative time-series of climate variables 

and hydrographs for each well.  Finally, Figure 4.11. shows phreatic-interface elevation-

frequency-distribution histograms and basic statistical analyses for each deep observation 

well (DOW) in the Yigo-Tumon Basin. 

 

4.1.  Contributing Hydrologic Variables 

As mentioned in Chapter 2, NGLA lens dynamics is influenced by external 

hydrologic variables, most especially rainfall and sea level fluctuations.  This section 

displays observed correlations between phreatic-interface levels and rainfall and sea level.  It 

should be noted that to interpret the correlations of groundwater levels with changes in 

rainfall, one must remove the sea-level signal from the water-level signal. 

 

4.1.1.  ONI, ENSO, and sea level 

The Oceanic Niño Index (ONI) (Figure 4.1.) indicates where Guam’s climate is in the 

El Niño Southern Oscillation (ENSO) climate pattern.  ONI provides a record of the occurrence 

of El Niño and La Niña conditions for Guam.  El Niño is declared when the ONI index is 

+0.5 or higher. Strong El Niño is defined when the ONI is +1.5 or higher.  In the period of 

record for this study, there are four El Niño occurrences and one strong El Niño event. 

Sea level (Figure 4.2.) is also influenced by ENSO.  Long-term (ie. low frequency) sea 

level fluctuations extend inland and influence lens position.  During El Niño years, sea level can 

drop by as much as 0.5 ft below mean sea level (bmsl). 

4.1.2.  Rainfall 

Guam’s average annual rainfall is 100 in.  Recharge into the NGLA is from rainfall 

infiltration, which results in lens thickening.  Figure 4.3 displays a) daily, b) monthly, and c) 

annual rainfall records.  The daily graph also includes the 5-year running sum of rainfall.  

The peak of the running sum marks the end of the second wettest 5-year period on record 

(2000-2004), and the low point of this line marks the end of the second driest 5-year period 

on record (2005-2009).  The year 2004 is noted for a wetter-than-average wet-season.  On 

June 27, 2004, Typhoon Ting-Ting set the all-time record of single-event rainfall with over 

20 in within 24 hours (Lander 2017, personal communications).  June and August of 2004 

each had more than 40 in of rain (Figure 4.3b).  In 2005 through 2009, there were no24-hour 

rainfalls greater than five inches, referred to here as “The Big Nothing”.
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Figure 4.1.  ONI and SST, 2000-2016.  The bars represent the 3-month moving average of the ONI record.  Yellow is index above 

0.5 (El Niño), red is index greater than 1.5 (Strong El Niño), gray bars (negative index) are La Niña (less than -0.5).  SST history 

is represented in the line graph, degrees Celsius. 

 

 

 

 
Figure 4.2.  Sea level (ft.), Apra Harbor, 2000-2016.  El Niño years experience extreme negative sea level.
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Figure 4.3(c) shows annual rainfall.  The dark blue bars are greater than 120 in, 

indicating a wetter than average year (100 in).  The green bars are years with less than 

average rainfall but greater than 80 in.  2016 had less than 80 in and is considered a drought 

year, indicated in yellow. 

Figure 4.3. Rainfall record, 2000-2016 (NCDC).  Top chart (a) is daily rainfall, middle (b) is 

monthly total, and bottom (c) is annual rainfall. 

 

4.1.3.  Correlation between rainfall and well water-levels 

The correlation between rainfall and water-level elevation was important for 

determining the communicative relationship between them.  To determine the correlation, 

daily water-level elevation for EX-7 was graphed along with rainfall for the same time 

period.  Rainfall data were an annual running sum of daily rainfall (in).  Sea level effects on 

vertical lens displacement were removed (Figure 4.4).  

 
Figure 4.4. Correlation of rainfall with well water-levels at EX-7.  This graph shows that 

daily well water-level is closely correlated with rainfall. 

(a) 

(b) 

(c) 
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4.2.  Well Levels and Freshwater-Saltwater Transition Zone 

This section reports graphical analysis of lens dynamics for each deep well, 

specifically changes in well level and freshwater-saltwater transition zone thickness in 

response to rainfall and sea level. 

Two types of water-level analyses were done:  The first analysis used daily water 

levels (1982-2016) in all 5 wells (EX-7, GHURA-Dededo (GD), EX-10, M-10A, and M-11, 

Figure 1.3.) to examine water-level response to rainfall.  The second analysis used quarterly 

water-level data in the 3 deep wells (EX-7, GD, and EX-10, Figure 1.3.), from 2000-2016, 

for lens-thickness analysis. 

4.2.1. Well levels 

Water-level data go back to 1982.  Figure 4.5. shows each daily water-level record for 

EX-7, GD, EX-10, M-10A, and M-11, in the Yigo-Tumon Basin as a line graph.  The top 

chart is water-level graphs spanning from 1982 to early 2016.  The bottom chart, 2004-2016, 

was prepared in order to show refinement of the data collection techniques using upgraded 

and more reliably calibrated level loggers (Presley 2016, personal communication). 

Four of the wells, M-10A, EX-7, EX-10 and GD, display similar behaviors.  M-11, 

however, shows a much greater responsiveness to recharge than the other wells. 

4.2.2.  Lens dynamics (to scale) 

Lens dynamics for the three DOWs in the Yigo-Tumon Basin were graphed using 

quarterly specific conductance profiles over 16 years.  This section describes the results of 

graphical and statistical analyses of wells EX-7, GD, and EX-10. 
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Figure 4.5. Daily water levels in the Yigo-Tumon Basin.  Top chart records from 1982-2016 and bottom chart 2004-2016. Bottom chart was made to show, in a wider-spread display, data from refinement in well level 

measurement techniques specifically using upgraded and more reliably calibrated level loggers, most notably at M-10A and EX-7, starting in 2004.
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4.2.2.1.  EX-7 

Data extracted from the quarterly profiles are water level (top of the freshwater lens), 

1100 µS/cm (bottom of the freshwater lens (BoFL)/top of the brackish zone), 25000 µS/cm 

(top of the saline zone), and 49000 µS/cm (bottom of the transition zone (BoTZ)/top of the 

saltwater zone) (Figure 3.1).  These parameters are graphed in a time-series for EX-7 in 

Figure 4.6.  The turquoise line at the very top shows the water level.  The blue line that starts 

at about –100 ft shows the elevation below mean sea level (bmsl) of the BoFL.  Groundwater 

above this line is below 250 mg/L Cl- (1100 µS/cm).  This level also constitutes the 

beginning of the transition zone (TZ).  The green line that starts at about –120 ft, indicates 

the elevation (bmsl) of 25000 µS/cm conductivity.  Groundwater at this level is inferred to be 

50% freshwater and 50% saltwater.  While the 50% isochlor is frequently used to arbitrarily 

define the bottom of the freshwater lens, this study accounts for the transition zone and 

resolves it into a brackish (1100-25000 µS/cm) zone and a saline (25000-49000 µS/cm) zone. 

Figure 4.6. EX-7, phreatic zone dynamics, 2000-2016. The groundwater between the blue 

line and the green line is designated as brackish and ranges from 250 mg/L Cl- (1100 µS/cm) 

to 8100 mg/L Cl- (25000 µS/cm).  Groundwater between the green line and the red line is 

designated as saline and ranges from 8100 mg/L Cl- (25000 µS/cm) to 16000 mg/L Cl- 

(49000 µS/cm). The red line is the elevation bmsl of 49000 µS/cm, which defines the bottom 

of the transition zone (BoTZ), below which is defined as saltwater (salinity equivalent to 

seawater). 

 

The average elevation of the water level at EX-7 is 3.5 ft above mean sea level 

(amsl).  The lowest water level was in 2001 when it measured 2.9 ft amsl, 16% lower than 

average.  The highest water level occurred in 2015 when it measured 4.3 ft amsl, an increase 

of 22% (Table 4.1.). 

The bottom of the freshwater lens (BoFL) in this well fluctuates up and down during 

this time series.  The average depth of this level is 106.3 ft bmsl.  The freshwater lens was 

shallowest in 2009 at 92.3 ft bmsl, 13% shallower than average.  It was deepest in 2004 at 

122.6 ft bmsl, a 15% increase in depth. 

Ting-Ting 

wettest driest 
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The 25000 µS/cm interface shows little variation over time.  The average depth of 

this level is 119.7 ft bmsl.  This level was shallowest in 2010 at 113.5 ft bmsl, 5% shallower 

than average.  It was deepest in 2004 at 128.7 ft bmsl, an 8% increase in depth. 

The BoTZ is the lowest phreatic boundary and shows dramatic variation over this 

time series.  The average depth of this level is 170.3 ft bmsl.  This level was shallowest in 

2001 at 146.9 ft bmsl, 14% shallower than average.  It was deepest in 2004 at 216.3 ft bmsl, a 

27% increase in depth. 

The freshwater lens shows thickening and thinning during this time series.  The 

average thickness is 109.8 ft.  The lens was thinnest in 2009 at 95.9 ft, 13% thinner than 

average.  It was thickest in 2004 at 126.2 ft, 15% thicker than average. 

The transition zone (TZ) at EX-7 shows the greatest variability of any component 

during this time series.  The average thickness of the TZ is 63.8 ft.  The TZ was thinnest in 

2007 at 45.6 ft, 28% thinner than average.  It was thickest in 2004 at 101.5 ft, 59% thicker 

than average.  Phreatic zone statistics are summarized in Table 4.1. 

 

Table 4.1.  EX–7 phreatic zone statistics 

 

 

4.2.2.2.  GHURA-Dededo 

A time series of the phreatic zones at GD is shown in Figure 4.7.  The average 

elevation of the water level at this well is 3.7 ft above mean sea level (amsl).  The lowest 

water level occurred in 2007 when it measured 3.2 ft amsl, 15% lower than average.  The 

highest was in 2015 when it measured 4.4 ft amsl, an increase of 20% (Table 4.2.). 

 

Figure 4.7.  GD, phreatic zone dynamics, 2000-2016.

(-) (+) 

Ting-Ting 

wettest driest 
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Like EX-7, the bottom of the freshwater lens (BoFL) in this well fluctuates 

substantially up and down during this time-series.  The average depth of this level is 121.1 ft 

bmsl.  The BoFL was shallowest in 2009 at 111.2 ft bmsl, 8% shallower than average.  It was 

deepest in 2005 at 139.6 ft bmsl, a 15% increase in depth. 

The 25000 µS/cm level shows little variation during this time of record.  The average 

depth of this level is 135.6 ft bmsl.  This level was shallowest in 2011 at 125.6 ft bmsl, 7% 

shallower than average.  It was deepest in 2004 at 152.0 ft bmsl, a 12% increase in depth. 

The BoTZ shows the most variation over this time series.  The average depth of this 

level is 152.5 ft bmsl.  This level was shallowest in 2011 at 137.1 ft bmsl, 10% shallower 

than average.  It was deepest in 2005 at 182.5 ft bmsl, a 20% increase in depth. 

The freshwater lens shows substantial thickening and thinning during this time series.  

The average thickness is 124.6 ft.  The lens was thinnest in 2009 at 114.6 ft, 8% thinner than 

average.  It was thickest in 2005 at 143.2 ft, 15% thicker than average. 

Similar to EX-7, the transition zone at GD shows the greatest variability of any 

component during this time series.  The average thickness of the TZ is 31.4 ft.  The TZ was 

thinnest in 2014 at 24.7 ft, 21% thinner than average.  It was thickest in 2004 at 43.9 ft, 40% 

thicker than average.  Phreatic zone statistics are summarized in Table 4.2. 

 

Table 4.2.  GD Phreatic zone statistics

 
 

4.2.2.3.  EX-10 

The time-series of the lens layers at EX-10 is shown in Figure 4.8.  The average 

elevation of the water level at this well is 3.3 ft above mean sea level (amsl).  The lowest 

water level occurred in 2007 when it measured 2.9 ft amsl, 12% lower than average.  The 

highest was in 2004 when it measured 3.8 ft amsl, an increase of 18%. 

The bottom of the freshwater lens (BoFL) in this well fluctuates gently up and down 

during this time series.  The average depth of this level is 99.6 ft bmsl.  This level was 

shallowest in 2001 at 92.2 ft bmsl, 7% shallower than average.   It was deepest in 2005 at 

108.1 ft bmsl, a 9% increase in depth. 

The 25000 µS/cm interface shows little variation during this time of record.  The 

average depth of this level is 116.0 ft bmsl.  This level was shallowest in 2012 at 109.9 ft 

bmsl, 5% shallower than average.  It was deepest in 2006 at 124.5 ft bmsl, a 7% increase in 

depth. 

The BoTZ also shows remarkably little variation over this time-series.  The average 

depth of this level is 139.3 ft bmsl.  This level was shallowest in 2001 at 132.8 ft bmsl, 5% 

shallower than average.  It was deepest in 2003 at 144.1 ft bmsl, a 3% increase in depth. 

(+) (-) 
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Figure 4.8.  EX-10, phreatic zone dynamics, 2000-2016. 

 

The freshwater lens shows minor thickening and thinning during this time series.  The 

average thickness is 102.8 ft.  The lens was thinnest in 2001 at 95.3 ft, 7% thinner than 

average.  It was thickest in 2005 at 111.6 ft 9% thicker than average. 

The transition zone at EX-10 shows less variability than at EX-7 or GD.  This well 

does not respond to recharge in the same way as EX-7 and GD.  The average thickness of the 

TZ is 39.7 ft.  The TZ was thinnest in 2005 at 35.5 ft, 11% thinner than average.  It was 

thickest in 2004 at 47.2 ft, 19% thicker than average.  Phreatic zone statistics are summarized 

in Table 4.3. 

4.2.2.4.  M-10A and M-11, Ghyben-Herzberg 

Depths of the 25000 µS/cm (saline/brackish) interfaces were assumed based on the 

Ghyben-Herzberg concept of 40:1.  The ratios were empirically determined for EX-7, GD, 

and EX-10 and then averaged, resulting in 36:1.  This ratio (36:1) was then applied to the 

water level data for water-level only wells, M-10A and M-11 to show where the 

saline/brackish interface might be based on the DOWs in the Yigo-Tumon Basin.  The 

resulting calculated depths are shown in Figure 4. 

 

Table 4.3.  EX-10 phreatic zone statistics 

 

 
 

Ting-Ting 

wettest driest 

(-) (+) 
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Figure 4.9.  Calculated depth of 25000 µS/cm level for M-10A and M-11 using a 36:1 ratio 

derived from the three deep wells. 

 

4.2.3.  Lag time response 

Lag time response of the freshwater lens refers to the time it takes for the lens to 

respond (thickening or thinning) to abundant recharge or drought conditions.  During this 16-

year time series, there is a period of above-average rainfall in June and August of 2004 

(Figure 4.3.).  During those two months alone, Guam saw a total of 80 inches of rainfall 

(80% of its average annual rainfall), including Typhoon Ting-Ting in June, which is the 

wettest storm on record.  From 2005-2009, Guam experienced a drought where the average 

annual rainfall for this time period was below 100 inches (Figure 4.3.).  For this study, 

thickening lag time response in months and thinning lag time response in years, was 

calculated post-August of 2004 to show lens response to abundant rainfall as well as drought 

condition response (Table 4.4). 

 

4.3.  Multi-graph Analysis 

In Figure 4.10., the hydrographs of each well are compared with one another and with 

the climactic variables that are driving and/or correlating with them: ONI, rainfall, and sea 

level.  The temporal major axes are labeled yearly, minor ticks-marks are 6 months, and the 

smallest time record is daily.  Rainfall, average sea level, and water level are daily.  A 5-yr 

running sum of rainfall is charted (orange line, secondary axis).  ONI, as El Niño/La Niña  
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Table 4.4.  Lag response for EX-7, GHURA-Dededo, and EX-10 

 

signal, is a three-month moving average, with color codes on the secondary axis: (0-0.5) black, 

(0.5-1.5) gold, (>1.5) red.  The phreatic data for each DOW (EX-7, GD, EX-10) are water level 

(hydraulic head), transition zone boundaries, and lens thickness.  Water level is either by daily 

logger, or periodic points with 1/yr to 7/yr intervals.  Transition zone data include the Ghyben-

Herzberg 40:1 computation to show estimated depth of 25000 µS/cm (yellow line in Figure 

4.10. b, c, and d) as opposed to calculated depth based on quarterly water-level measurements 

(dotted black line in Figure 4.10. b, c, and d).  Elevations are shown for hydraulic head and 

transition zone boundaries; units are in feet.  Lens thickness is the difference between the 

measured hydraulic head and BoFL.  Note that phreatic layering is inverted in each 

hydrograph. 
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Figure 4.10. Multi-variable lens hydrograph analysis.  Contributing hydrologic variables aligned to a time-series lens hydrograph.

(a) 

(d) 

(c) 

(b) 
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4.4.  Frequency Analysis of Phreatic Interfaces 

Figure 4.11 shows three graphs with elevation (vertical axis, ft bmsl) and frequency 

distribution (horizontal axis) of the phreatic interfaces for water level, BoFL, and BoTZ.  

Other information includes Ghyben-Herzberg depths and basic borehole information for each 

well, including the nearest distance to shore. The next chapter is a discussion of the results 

 
Figure 4.11.  Frequency analysis of phreatic interface elevations. Horizontal axes are depth 

frequency, top axis for water level, and transition zone axis at –75 ft.  The general range of 

production well depths (25 to 40 ft bmsl) is shown on each graph. 
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Chapter 5  

 

DISCUSSION 

 

Section 5.1., below, discusses the correlation of water levels in EX-7 with annually 

averaged rainfall over the period of record (2000-2016), as shown in Figure 4.4.  Section 5.2. 

addresses the thickness history of the fresh, brackish, saline, and saltwater zones for each of 

the three wells (EX-7, GHURA-Dededo (GD), EX-10) from 2000-2016, as shown in Figures 

4.6.-4.8. 

Section 5.3. addresses observations from a comparative historical analysis of the 

correlation of phreatic interface elevations with the Oceanic El Niño Index, 5-year running 

sum of rainfall, and sea levels for 2000-2016, as shown in Figure 4.10. 

Section 5.4. provides interpretations of the elevation-frequency distributions for the 

phreatic interface elevations for each of the three deep observation wells (DOWs), as shown 

in Figure 4.11. 
 

5.1.  Correlation Between Water Level and Annual Rainfall in EX-7 

The close correlation between the annual (365-day) running total rainfall and the 

daily well-water-level curve shown in Figure 4.4. shows that the characteristic water-level 

time of response in EX-7 to seasonal rainfall is less than a year.  The inter-annual trends are 

almost perfectly matched.  These observations suggest that the recharge component of 

rainfall generally descends to the water table within a year of the rainfall event that deposited 

it and that the rate of recharge reflects an annual average of the seasonal distribution. 

5.2.  Groundwater Recharge and Freshwater Lens Response 

Figures 4.6.-4.8 in Section 4.2.2, Lens Dynamics, show the phreatic interfaces for 

each well thickening and thinning over the 2000-2016 study period.  Of the three phreatic 

interface graphs, EX-7 (Figure 4.6) shows the most extensive transition zone response.  The 

transition zone of EX-7 is the thickest, and GD (Figure 4.7) is the thinnest.  EX-7 has a thick 

saline layer, thickest in 2004, 100 ft, responding promptly to Typhoon Ting-Ting, which 

delivered more than 20 in of rainfall in 24 hours.  Following that record storm, the brackish 

layer thinned in each of the three wells, apparently giving way to thickening of the freshwater 

layer above, the base of which descended in each well.  EX-10 in general shows a more 

muted response than the other two wells, in this case showing longer lag and more gradual 

response in the thinning of the brackish zone.  The EX-10 brackish zone thinning reached it 

thinnest after three years, while EX-7 and GD’s brackish zone thinned to their minima before 

the end of the year.  For each case, following the recharge from intense storms, the 

freshwater lens deepens, the brackish layer thins, and the saline layer thickens.  Further 

analysis on transition zone dynamics will be needed to address such questions as why the 

saline zone thickens as the brackish zone thins. 

In addition to the response to the 2004 storm, Figures 4.6-4.8 also show lens 

responses to interannual variations between abundant rainfall and drought.  The 2000-2016 

period of record fortuitously includes not only a record storm (Typhoon Ting-Ting) but the 

storm is bracketed by the second-wettest 5-year period (2000-2005) and the second-driest 

(2005-2009) 5-year period ever recorded.  The wettest 5-year period in this time-series saw 

over 100 inches of rainfall annually, with 2004 having over 120 inches.  (Average rainfall is 
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100 in, with a standard deviation of 22 in).  In June and August of 2004, Guam received a 

combined 80 inches of rain (40 inches each month) which is 80% of the average annual 

rainfall.  The driest 5-year period in this time-series followed, beginning in 2005 and is 

designated as “The Big Nothing” (Lander 2010, personal communication) in which annual 

rainfall was less than 100 inches (approximately 20% less than average) (Figure 4.3.). 

Charting lens response to these climate events (Figure 4.10) provides insights into 

aquifer capacity for long-term storage.  The lens response at each well can be seen before and 

after these periods of rainfall or drought.  Lens thickness was measured pre-June 2004, and 

then again after August 2004, when the lens was at its thickest.  The lag time was then 

calculated to determine response to abundant rainfall.  For drought response, lens thickness 

was measured post-August 2004, and lag time to the thinnest measurement was determined 

(Table 4.4.).  The graphs show that after 2005 into The Big Nothing, the thinning of the 

freshwater lens occurred at rates of 4-6 ft/yr for the three DOWs (Table 5.1.). 

 

Table 5.1.  Freshwater lens thickening and thinning rates 

 

 
 

In the transition zone, during this period of drought, the saline zone is slowly 

thinning, while the brackish zone is thickening.  The brackish-saline interface is the least 

dynamic interface.  The following subsections are specific discussion for each DOW. 

5.2.1.  EX-7 phreatic interface dynamics 

In June 2004, the freshwater lens at EX-7 was 113 ft thick, 3 ft thicker than average 

(110 ft) (Figures 4.6 and 4.10b).  It reached its thickest, 126 ft, in December 2004 over a lag 

time of about six months, thickening at an average rate of 2.2 ft/mo.  Post-August 2004, the 

lens at EX-7 was thinnest, 96 ft, in December 2009, thinning over lag time of five years at an 

average rate of 6.0 ft/yr (Table 4.4. and Table 5.1.).  This suggests that recharge from the 

surface flows quickly to the lens during periods of high rainfall.  Discharge from the lens, 

however, is slower. 

 

5.2.2.  GHURA-Dededo phreatic interface dynamics 

In June 2004, the freshwater lens at GD was 129 ft thick, 4 ft thicker than the average 

thickness of 125 ft (Figures 4.7., 4.10c).  It reached its thickest, 143 ft, in February 2005 

showing a thickening lag time of eight months at an average rate of 1.8 ft/mo.  Post-August 

2004, the lens at GD was thinnest, 115 ft, in June 2009, resulting in a thinning lag time of 4.3 

years at an average rate of 6 ft/yr (Table 4.4. and Table 5.1.).  GD responds to rainfall 

similarly to EX-7 with recharge reaching the lens quickly and taking much longer to 

discharge and therefore thin.  EX-7 and GD may be located in similar hydrogeologic 

conditions as they both lie along the axis of the Yigo Trough (Figure 1.3.) which might 

explain their similar thickening and thinning behaviors. 
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5.2.3.  EX-10 phreatic interface dynamics 

In June of 2004, at the time of the storm, the freshwater lens at EX-10 was 104 ft 

thick, very close to the average of 103 ft thick (Figures 4.8, 4.10d).  It reached its thickest, 

112 ft, in August 2005 showing a thickening lag time of 14 months at an average rate of 0.6 

ft/mo.  Post-August 2004, the lens at EX-10 was thinnest, 97 ft, in December 2009, thinning 

over 4.3 years at an average rate of 4 ft/yr (Table 4.4. and Table 5.1.).  EX-10, which lies 

north of the axis of the Yigo-Tumon Trough, shows a different response to recharge than EX-

7 and GD.  It takes almost twice as long for the lens at EX-10 to thicken compared with the 

other two wells.  Both EX-7 and GD, which lie along or near the axis of the Yigo Trough, 

respectively, thicken and thin at similar rates (around 2 ft/mo to thicken and 6 ft/yr to thin).  

EX-10 is located north of the axis of the Yigo Trough (Figure 1.3.) and has a much slower 

rate of thickening and thinning (0.6 ft/mo to thicken to maximum and 4 ft/yr to thin to 

minimum). 

 

5.3.  Multi-graph Comparison 

Figure 4.10 displays the ENSO history, 5-year running rainfall total, and sea-level 

history for 2000-2016 with corresponding measured water levels and internal phreatic 

boundary levels for each of the three DOWs.  The following subsections discuss observed 

relations between these climate variables and the lens dynamic behavior in each well. 

 

5.3.1.  Oceanic Niño Index 

The ONI provides a record of the occurrence of El Niño (ENSO) conditions for 

Guam.  Knowing where Guam is in the ENSO cycle is important to understand as this 

phenomenon dictates the amount of rainfall the island receives.  During El Niño years, there 

is a pattern of initially heavy rainfall, but as the region shifts into El Niño, rainfall diminishes 

and there can even be severe drought (Lander, PEAC Report).  The yellow bars indicate 

declared El Niño and the red bars indicate a strong El Niño.  Guam had a declared El Niño 

in: 2002-2003, 2004-2005, 2006-2007, 2009-2010 and a strong El Niño in 2015-2016 

(Figures 4.1. and 4.10a). 

Although sea surface temperature (SST) has no direct effect on aquifer responses to 

ENSO, SST is one of the parameters in the ENSO Index, and is thus shown in Figure 4.10a.  

SSTs vacillated between 25o-30o during this time series.  The highest SSTs were seen when 

ONIs were at or above +0.5 and therefore occurred during El Niño years.  This graph of ONI 

and sea surface temperature (SST) describes the regional climate conditions on Guam for this 

time series. 

5.3.2.  Sea level 

Sea level is also influenced by ENSO.  During El Niño years, mean sea level on 

Guam can be more than a foot lower than during La Niña or neutral years.  For most of the 

study period (2000-2016), sea level has remained above mean sea level (amsl).  The average 

sea level was 0.35 ft amsl (0.00 msl is set at the mean lowest-low tide).  Sea level dropped 

below mean sea level in 2002-2003, 2004-2005, slightly in 2007 and 2009, and again in 

2015-2016.  These drops in sea level correspond to El Niño years.  There is a slight effect on 

lens position as sea level drops but not enough to significantly affect the conclusions 

discussed here.
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5.3.3.  Rainfall 

Daily, monthly and annual rainfall amounts were observed for this study.  The 

average daily rainfall is 0.29 inches, however, there is a high degree of variability in daily 

rainfall amounts and rainfall is concentrated in the wet season.  Daily rainfall amounts were 

used to calculate the 5-year running sum, which is shown by the orange line above the 

rainfall amounts (Figures 4.3a and 4.10a). 

The average monthly rainfall on Guam is 8.7 inches, indicated by the dotted 

horizontal blue line (Figure 4.3b).  The blue columns are months where rainfall exceeded 10 

inches per month.  Every year in this time series has months with higher than ten inches per 

month with the exception of 2000, 2008, and 2010.  These three years had some months with 

higher than average rainfall but did not exceed ten inches per month. 

The average annual rainfall on Guam is 100 inches (see Figure 4.3c), with a standard 

deviation of 22 in.  During this time series, there were six years (2001, 2002, 2003, 2009, 

2012, and 2014) of average rainfall (100-120 in), three years (2004, 2011, and 2015) of 

above average rainfall (>120 in), and eight years (2000, 2005, 2006, 2007, 2008, 2010, 2013 

and 2016) of below average rainfall (80-100 in).  Annual rainfall amounts have a definitive 

impact on Guam’s aquifer.  Years of higher than average rainfall result in Guam’s freshwater 

lens thickening and years of drought show a thinning of the lens. 

 

5.4.  Vertical depth Frequency Analysis 

Depth-frequency analysis (Figure 4.11) shows the frequency at which each 

groundwater interface occupies a given depth during this study period.  A depth-frequency 

analysis was done for each deep observation well level (DOWL) except for the 25000 µS/cm 

level, omitted for simplicity.  The three levels of interest for this analysis are the water level 

(blue line), the bottom of the freshwater lens (BoFL) (green line) and the bottom of the 

transition zone (BoTZ) (red line).  Also shown, is the production well depth zone consistent 

with depths of 25-40 ft bmsl, as suggested by Mink (1976) and CDM (1982). 

 

5.4.1.  DOW EX-7 

Water level at EX-7 shows a likely normal distribution with a smaller mode (Figure 

4.11.).  Periods of drought would explain a lower than average water level and periods of 

high recharge would result in water levels being higher than normal.  The distribution of this 

level indicates that water levels act as we would expect in response to recharge. 

The BoFL shows a bimodal distribution in which one mode would correspond to the 

wettest period in this record (2000-2004) and the other mode to the driest period (2005-

2009).  One would expect the BoFL to rise during times of drought and to deepen during 

periods of high recharge. 

There is a similar distribution for the BoTZ (red line).  It is bimodal and would also 

correspond to the wettest and driest periods during this time series. 

 

5.4.2.  DOW GHURA-Dededo 

Water level at GD has a positively-skewed distribution with several spikes which 

would suggest a more sensitive response to recharge.  BoFL and BoTZ distribution for this 

well are very similar in shape: both showing two strong modes, with a third smaller mode a 

little deeper.  These two deeper modes correspond to the 2004 period of abundant recharge, 
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indicating that GD may have a more dynamic storage capacity in response to high recharge 

events. 

 

5.4.3.  DOW EX-10 

Water level at EX-10 has a likely normal distribution, indicating that this water level 

also behaves as we would expect in response to recharge (Figure 4.11.)  The BoFL of this 

well differs from EX-7 and GD in that it has a normal distribution and is most often found at 

its average depth.  This may be due to its position north of the axis of the Yigo Trough, and 

as a result has a more rapid response to recharge and faster discharge as well.  The BoTZ, 

however, shows a bimodal distribution similar to EX-7.  This would suggest that the BoTZ is 

more sensitive to recharge than the BoFL. 



34 

Chapter 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

This study is the first long-term study of NGLA lens dynamics.  It was concentrated 

on a single basin with data from three deep observation wells (DOWs).  The long-term, 

practical implications of this study are that lens dynamics for the entire aquifer can be 

measured, and the data used for sustainable management.  This project is a flagship study 

that eventually aims to help address such frequently asked questions as: 1) During severe 

drought, how does the lens thin and how long does it take? 2) What is the sustainable yield of 

this aquifer?, and 3) How deep can we drill wells into the lens, and how hard can we pump 

those wells?  This section lays out findings in the Yigo-Tumon Basin and recommendations 

for future studies. 
 

6.1.  Goals and Objectives 

The goals and objectives outlined in Chapter 1 have been addressed and fulfilled.  

Data from the three DOWs in Yigo-Tumon basin, were collected, examined and organized to 

show multi-variable interactions that contribute to NGLA lens dynamics.  Statistical analysis 

was done on the three DOWs to show lens behavior, transition zone response, and head-to-

saltwater interface ratio for this portion of the aquifer.  The Ghyben-Herzberg ratio was used 

as a guide to estimate depth of saltwater interface for the water-level wells, M-10A and M-

11.  Lens response to recharge was correlated to seasonal, inter-annual, and episodic changes 

in rainfall.  Finally, recommendations are made about the applications of these findings in 

determining appropriate sustainable development strategies for the NGLA. 

6.2.  Summary of Aquifer Dynamics 

The main determinant of lens behavior is annual recharge.  The NGLA shows an 

obvious response to running annual variations in recharge.  During periods of drought, the 

lens thins, and during times of recharge, the lens thickens.  The lag time for thinning is twice 

as long as the lag time for thickening at all three DOWs (Table 5.1.).  Each well in this study, 

however, has a unique lens response due to local geologic conditions.  Overall response 

suggests that fast flow through the vadose zone is rapid and that there may be a fast 

percolation mode as suggested by Bautista (2017).  Discharge is slower than maximum rates 

of recharge.  Transition zone dynamics show a complex and varied response to variations in 

recharge and should be studied on their own. 

 

6.3.  Recommendations and Future Studies 

Study of the other five basins is needed next, and our recommendations include 

installing DOWs in each basin to obtain a comprehensive NGLA lens history.  This history 

will not only provide insight into lens dynamics (such as behavior during drought) but will 

also assist in future modeling of lens dynamics. 
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6.3.1.  Observation well expansion 

New well additions should be a coordinated effort between Guam Hydrologic Survey, 

Guam Waterworks Association, USGS and Department of Defense activities.  The USGS can 

provide guidance and consultation on new well locations and assist with well rehabilitation.  

Eight new observation wells are planned to be installed by the Monitoring System Expansion 

and Rehabilitation Program (MSERP) (USGS/WERI Proposal: Groundwater Resources 

Program for the Northern Guam Lens Aquifer, 2016-2025) and to be maintained by the One 

Guam Aquifer Monitoring Program (OGAMP) which will be administered by USGS and 

WERI (Figure 6.1.). 

 

 
Figure 6.1. Planned expansion and rehabilitation of observation wells (MSERP).  Blue box 

symbols are sites for new DOWs (8 total) and yellow-filled circles are existing observation 

wells that will undergo rehabilitation.
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The new wells are expected to be operational by the end of 2020.  The already 

existing wells are to be rehabilitated and subsequently maintained by the CWMP, and jointly 

administered by USGS/WERI.  Wells should be located in areas of easy access for 

monitoring and maintenance purposes and at least 4000 ft from the shoreline. 

CTD and continuous water-level monitors should be placed in each DOW to obtain 

more accurate and precise information about lens response to recharge events.  Quarterly 

monitoring does not show rapid lens responses to periods of high or intense recharge such as 

during tropical storms and typhoons.  Continuous monitoring of these wells would give a 

more detailed and better understanding of responses and lag times. 

Production well depth has historically been 25-40 ft bmsl based on recommendations 

from the Northern Guam Lens Study (CMD 1982).  This appears to be conservative given 

that the BoFL of all three DOWs is always below 80 ft bmsl during this study.  This study 

does not, however, consider the dynamics of saltwater intrusion that may arise from 

production pumping changes. 

 

6.3.2.  Groundwater modeling 

Modeling analysis will also benefit from the continued study of lens history and 

dynamics.  This study provides empirical data to which modeling results can be compared 

and history matched.  Understanding actual lens behavior allows modelers to better predict 

lens response to future climate events and conditions.
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